

Team CIMAR’s NaviGATOR: An Unmanned Ground Vehicle for

Application to the 2005 DARPA Grand Challenge

Carl D. Crane IIIa, David G. Armstrong IIa, Robert Touchtona, Tom Galluzzoa,
Sanjay Solankia, Jaesang Leea, Daniel Kenta, Maryum Ahmeda,

Roberto Montanea, Shannon Ridgewaya, Steve Velata, Greg Garciaa,
Michael Griffisb, Sarah Grayc , John Washburnd, Gregory Routsond

aUniversity of Florida, Center for Intelligent Machines and Robotics, Gainesville, Florida

bThe Eigenpoint Company, High Springs, Florida

cAutonomous Solutions, Inc., Young Ward, Utah

dSmiths Aerospace, LLC, Grand Rapids, Michigan

ABSTRACT

This paper describes the development of an autonomous vehicle system that participated in the 2005
DARPA Grand Challenge event. After a brief description of the event, the architecture, based on
version 3.0 of the DoD Joint Architecture for Unmanned Systems (JAUS), and design of the system
are presented in detail. In particular, the “smart sensor” concept is introduced which provided a
standardized means for each sensor to present data for rapid integration and arbitration. Information
about the vehicle design, system localization, perception sensors, and the dynamic planning
algorithms that were used is then presented in detail. Subsequently, testing results and performance
results are presented.

Keywords: DARPA Grand Challenge, autonomous navigation, path planning, sensor fusion, world

modeling, localization, JAUS

1. INTRODUCTION

The DARPA Grand Challenge is widely recognized as the largest and most cutting-edge robotics
event in the world, offering groups of highly motivated scientists and engineers across the US an
opportunity to innovate in developing state-of-the-art autonomous vehicle technologies with
significant military and commercial applications. The US Congress has tasked the military with
making nearly one-third of all operational ground vehicles unmanned by 2015 and The DARPA
Grand Challenge is one in a number of efforts to accelerate this effort. The intent of the event is to
spur participation in robotics by groups of engineers and scientists outside the normal military
procurement channels including leaders in collegiate research, military development, and industry
research.

Team CIMAR is a collaborative effort of the University of Florida Center for Intelligent Machines
and Robotics (CIMAR), The Eigenpoint Company of High Springs, Florida, and Autonomous
Solutions of Young Ward, Utah. The goal of Team CIMAR is to develop cutting edge autonomous
vehicle systems and solutions with wide ranging market applications such as intelligent
transportation systems and autonomous systems for force protection. Team CIMAR focused on
proving their solutions on an international level by participating in both the 2004 and the 2005
DARPA Grand Challenges.

In 2003, Team CIMAR was one of 25 teams selected from over 100 applicants nationwide to
participate in the inaugural event. Team CIMAR was also one of the 15 teams that successfully
qualified for and participated in the inaugural event in March 2004; and finished 8th. Team CIMAR
was accepted into the inaugural DARPA Grand Challenge in late December 2003 and fielded a top
10 vehicle less than three months later. The team learned a tremendous amount from the initial
event and used that experience to develop a highly advanced new system to qualify for the second
Grand Challenge in 2005 (see Figure 1).

 (b) Team CIMAR’s 2005 DARPA
Grand Challenge Entry

(a) Team CIMAR’s 2004 DARPA
Grand Challenge Entry

Figure 1: The NaviGATOR

2. SYSTEM ARCHITECTURE AND DESIGN

The system architecture that was implemented was based on the Joint Architecture for Unmanned
Systems (JAUS) Reference Architecture, Version 3.0 (JAUS, 2005). JAUS defines a set of reusable
components and their interfaces. The system architecture was formulated using existing JAUS-
specified components wherever possible along with a JAUS-compliant inter-component messaging
infrastructure. Tasks for which there are no components specified in JAUS required the creation of
so-called “Experimental” components using “User-defined” messages. This approach is endorsed
by the JAUS Working Group as the best way to extend and evolve the JAUS specifications.

2.1. High-Level Architecture
At the highest level, the architecture consists of four fundamental elements, which are depicted in
Figure 2:

• Planning Element: The components that act as a repository for a priori data. Known
roads, trails, or obstacles, as well as acceptable vehicle workspace boundaries.
Additionally, these components perform off-line planning based on that data.

• Control Element: The components that perform closed-loop control in order to keep the
vehicle on a specified path.

• Perception Element: The components that perform the sensing tasks required to locate
obstacles and to evaluate the smoothness of terrain.

• Intelligence Element: The components that act to determine the ‘best’ path segment to be
driven based on the sensed information.

2.2. Smart Sensor Concept
The Smart Sensor concept unifies the formatting and distribution of perception data among the
components that produce and/or consume it. First, a common data structure, dubbed the
Traversability Grid, was devised for use by all Smart Sensors, the Smart Arbiter, and the Reactive
Driver. Figure 3 shows the world as a human sees it in the upper level, while the lower level shows
the Grid representation based on the fusion of sensor information. This grid was sufficiently
specified to enable developers to work independently and for the Smart Arbiter to use the same
approach for processing input grids no matter how many there were at any instant in time.

The basis of the Smart Sensor architecture is the idea that each sensor processes its data
independently of the system and provides a logically redundant interface to the other components
within the system. This allows developers to create their technologies independently of one another
and process their data as best fits their system. The sensor can then be integrated into the system
with minimal effort to create a robust perception system. The primary benefit of this approach is its
flexibility, in effect, decoupling the development and integration efforts of the various component
researchers. Its primary drawback is that it prevents the ability of one sensor component to take
advantage of the results of another sensor when translating its raw input data into traversability
findings.

Figure 2: The NaviGATOR’s JAUS-compliant Architecture

The Traversability Grid concept is based on
the well-understood notion of an Occupancy
Grid, which is often attributed to Alberto Elfes
of Carnegie-Mellon University (Elfes, 1989).
His work defines an Occupancy Grid as “a
probabilistic tesselated representation of
spatial information.” Sebastian Thrun
provides an excellent treatise on how this
paradigm has matured over the past 20 years
(Thrun, 2003). The expansion of the
Occupancy Grid into a Traversability Grid has
emerged in recent years in an attempt to
expand the applicability and utility of this
fundamental concept (Seraji, 2003), (Ye,
2004). The primary contribution of the
Traversability Grid implementation devised
for the NaviGATOR is its focus on

Figure 3: Traversability Grid Portrayal

carl
Text Box
Figure 3: Traversability Grid Portrayal

representing degrees of traversability including terrain conditions and obstacles (from absolutely
blocked to unobstructed level pavement) while preserving real-time performance of 20 Hz.

The Traversability Grid design is 121 rows (0 – 120) by 121 columns (0 – 120), with each grid cell
representing a half-meter by half-meter area. The center cell, at location (60, 60), represents the
vehicle’s reported position. The sensor results are oriented in the global frame of reference so that
true north is always aligned vertically in the grid. In this fashion, a 60m by 60m grid is produced
that is able to accept data at least 30m ahead of the vehicle and store data at least 30m behind it. To
support proper treatment of the vehicle’s position and orientation, every Smart Sensor component is
responsible for establishing a near-real-time latitude/longitude and heading (yaw) feed from the
GPOS component.

The scoring of each cell is based on mapping the sensor’s assessment of the traversability of that
cell into a range of 2 to 12, where 2 means that the cell is absolutely impassable, 12 means the cell
represents an absolutely desirable, easily traversed surface, and 7 means that the sensor has no
evidence that the traversability of that cell is particularly good or bad. Certain other values are
reserved for use as follows: 0 → “out-of-bounds,” 1 → “value unchanged,” 13 → “failed/error,” 14
→ “unknown,” and 15 → “vehicle location.” These discrete values have been color-coded to help
humans visualize the contents of a given Traversability Grid, from red (2) to gray (7) to green (12).

All of these characteristics are the same for every Smart Sensor, making seamless integration
possible, with no predetermined number of sensors. The grids are sent to the Smart Arbiter, which
is responsible for fusing the data. The arbiter then sends a grid with all the same characteristics to
the Reactive Driver, which uses it to dynamically compute the desired vehicle speed and steering.

The messaging concept for marshalling grid cell data from sensors to the arbiter and from the
arbiter to the reactive driver is to send an entire traversability grid as often as the downstream
component has requested it (typically at 20 Hz). In order to properly align a given sensor’s output
with that of the other sensors, the message must also provide the latitude and longitude of the center
cell (i.e., vehicle position at the instant the message and its cell values were determined). An
alternative approach for data marshalling was considered in which only those cells that had changed
since the last message were packaged into the message. Thus, for each scan or iteration, the
sending component would determine which cells in the grid have new values and pack the row,
column, and value of that cell into the current message. This technique greatly reduces the network
traffic and message-handling load for nominal cases (i.e., cases in which most cells remain the same
from one iteration to the next). However, after much experimentation in both the lab and the field,
this technique was not used due to concerns that a failure to receive and apply a changed cells
message would corrupt the grid and potentially lead to inappropriate decisions, while the
performance achieved when sending the entire grid in each message never became an issue (our
concern about the ability of the Smart Sensor computers, or the onboard network, to process
hundreds of full-grid messages per second did not manifest itself in the field).

In order to aid in the understanding, tuning, and validation of the Traversability Grids being
produced, a Smart Sensor Visualizer (SSV) component was developed. Used primarily for testing,
the SSV can be pointed at any of the Smart Sensors, the Smart Arbiter, or the Reactive Driver and it
will display the color-coded Traversability Grid, along with the associated vehicle position,

heading, and speed. The refresh rate of the images is adjustable from real-time (e.g., 20 Hz) down
to periodic snapshots (e.g., 1 second interval).

2.3. Concept of Operation
The most daunting task of all was integrating these components such that an overall mission could
be accomplished. Figure 4 portrays schematically how the key components work together to
control the vehicle. Figure 4 also shows how the Traversability Grid concept enables the various
Smart Sensors to deliver grids to the Smart Arbiter, which fuses them and delivers a single grid to
the Reactive Driver. Prior to beginning a given mission, the a priori Planner builds the initial path,
which it stores in a Path File as a series of GPS waypoints. Once the mission is begun, the Reactive
Driver sequentially guides the vehicle to each waypoint in the Path File via the Primitive Driver.
Meanwhile, the various Smart Sensors begin their search for obstacles and/or smooth surfaces and
feed their findings to the Smart Arbiter. The Smart Arbiter performs its data fusion task and sends
the results to the Reactive Driver. The Reactive Driver looks for interferences or opportunities
based on the feed from the Smart Arbiter and alters its command to the Primitive Driver
accordingly. Finally, the goal is to perform this sequence iteratively on a sub-second cycle time (10
to 60 Hz), depending on the component, with 20 Hz as the default operational rate.

obstacle
detection

smart
aribiter

reactive
driver

world
model

a priori
path

terrain
evaluation

primitive
driver

Figure 4: Operational Schematic (including Traversability Grid Propagation)

carl
Text Box
reactive

carl
Text Box
driver

carl
Text Box
driver

carl
Text Box
primative

carl
Text Box
model

carl
Text Box
world

carl
Text Box
a priori

carl
Text Box
path

carl
Text Box
smart

carl
Text Box
arbiter

carl
Text Box
terrain

carl
Text Box
evaluation

carl
Text Box
obstacle

carl
Text Box
detection

3. VEHICLE DESIGN

The NaviGATOR’s base platform is an all terrain vehicle custom built to Team CIMAR's
specifications. The frame is made of mild steel roll bar with an open design. It has 9" Currie axles,
Bilstein Shocks, hydraulic steering, and front and rear disk brakes with an emergency brake to the
rear. It has a 150 HP Transverse Honda engine/transaxle mounted longitudinally, with locked
transaxle that drives front and rear Detroit Locker differentials (4 wheel drive, guaranteed to get
power to the road). The vehicle was chosen for its versatility, mobility, openness, and ease of
development (see Figure 5).

 (a) (b)

Figure 5: Base Mobility Platform

The power system consists of two, independent 140A, 28V alternator systems (Figure 5a). Each
alternator drives a 2400W continuous, 4800W peak inverter and is backed up by 4 deep cell
batteries. Each alternator feeds one of two automatic transfer switches (ATS). The output of one
ATS drives the computers and electronics while the other drives the actuators and a 3/4 Ton
(approx. 1kW cooling) air conditioner. Should either alternator/battery system fail the entire load
automatically switches to the other alternator/battery system. Total system power requirement is
approximately 2200W, so the power system is totally redundant.

The system sensors are mounted on
a rack that is specifically designed
for their configuration and
placement on the front of the
vehicle (see Figure 6). These
sensors include a camera that finds
the smoothest path in a scene.
Equipped with an automatic iris
and housed in a waterproof and
dust proof protective enclosure, the
camera looks through a face that is
made of lexan and covered with
polarizing, scratch-resistant film.
Also mounted on the sensor cage
are two SICK LADARS that scan
the ground ahead of the vehicle for

Figure 6: View of Sensor Cage

terrain slope estimation, one tuned for negative obstacle detection and the other for smooth terrain
detection. Also, an additional SICK LADAR aimed parallel to the ground plane is mounted on the
front of the vehicle at bumper level for planar obstacle detection. Additional sensors were mounted
on the vehicle for experimental purposes, but were not activated for the DGC event. Each sensor
system is described in detail later in this paper.

The computing system requirements consists of high level computation needs, system command
implementation, and system sensing with health and fault monitoring. The high level computational
needs are met in the deployed system via the utilization of eight single-processor computing nodes
targeted at individual computational needs. The decision to compartmentalize individual processes
is driven by the developmental nature of the system. A communications protocol is implemented to
allow inter-process communication.

The individual computing node hardware
architecture was selected based on the
subjective evaluation of commercial off-
the-shelf hardware. Evaluation criteria
were centered on performance and power
consumption. The deployed system
maintains a homogenous hardware
solution with respect to motherboard,
ram, enclosure, and system storage. The
AMD K8 64 bit microprocessor family
was selected based on power
consumption measurement and
performance to allow tailoring based on
performance requirements with the
objective of power requirement reduction.
Currently three processor speeds are
deployed: 2.0 ghz, 2.2 ghz, and 2.4 ghz. The processors are hosted in off the shelf motherboards
and utilize solid-state flash cards for booting and long-term storage. Each processing node is
equipped with 512 to 1028 MB of RAM. JAUS communication is effected through the built in
Ethernet controller located on the motherboard. Several nodes host PCI cards for data i/o. Each
node is housed in a standard 1-U enclosure. The operating system deployed is based on the 2.6
Linux kernel. System maintenance and reliability are expected to be adequate due to the
homogenous and modular nature of the compute nodes. Back-up computational nodes are on hand
for additional requirements and replacement. All computing systems and electronics are housed in
a NEMA 4 enclosure mounted in the rear of the vehicle (see Figure 7).

Figure 7: Computer and Electronics Housing

4. ROUTE PRE-PLANNING

The DARPA Grand Challenge posed an interesting planning
problem given that the route could be up to 175 miles in length
and run anywhere between Barstow, California and Las Vegas,
Nevada. On the day of the event, DARPA supplied a Route
Data Definition File (RDDF) with waypoint coordinates,
corridor segment width and velocity data. In order to process
the a priori environment data and generate a route through
DARPA’s waypoint file, Team CIMAR uses Mobius, an easy to
use graphical user interface developed by Autonomous Solutions
Inc. for controlling and monitoring unmanned vehicles. Mobius
was used to plan the initial path for the NaviGATOR in both the
National Qualification Event and the final Grand Challenge
Event.

The route pre-planning is done in three steps: generate corridor
data, import and optimize the DARPA path, and modify path
speeds. A World Model component generates the corridor data
by parsing DARPA’s RDDF and clipping all other environment
information with the corridor such that only elevation data inside
the corridor is used in the planning process (see Figure 8). The
RDDF corridor (now transformed into an ESRI shapefile) is then
imported into Mobius and displayed to the operator for
verification.

Figure 8: RDDF Corridor
(parsed with elevation data)

In the next step, Mobius imports the original RDDF file for use in path generation. Maximum
velocities are assigned to each path segment based on the DARPA assigned velocities at each
waypoint. From here, the path is optimized using the NaviGATOR’s kinematics constraints and a
desired maximum deviation from the initial path. The resultant path is a smooth, drivable path from
the start node to the finish node that stays inside the RDDF corridor generated specifically for the
NaviGATOR (see Figure 9). Mobius is then used to make minor path modifications where
necessary to create a more desirable path.

The final step of the pre-planning process is to modify path velocities based on a priori
environment data and velocity constraints of the NaviGATOR itself. Sections of the path are
selected and reassigned velocities. Mobius assigns the minimum of the newly desired velocity and
the RDDF-assigned velocity to the sections in order to ensure that the RDDF-assigned velocities are
never exceeded. During the DARPA events, the maximum controlled velocity of the NaviGATOR
was 25 miles per hour so, in the first pass, the entire path was set to a conservative 18 mph except in
path segments where the RDDF speed limit was lower. From there, the path is inspected from start
to finish and velocities are increased or decreased based on changes in curvature of the path, open
environment (dry lake beds), elevation changes, and known hazards in the path (e.g., over/under
passes). After all velocity changes are made, the time required to complete the entire path can be
calculated. For the race, it was estimated that it would take the NaviGATOR approximately 8 hours

and 45 minutes to complete the course. Finally, the path is saved as a comma separated Path File
and transferred to the NaviGATOR for autonomous navigation.

Figure 9: Mobius screen shot with path optimized for the NaviGATOR. The race RDDF
is shown in the upper left corner and the start/finish area is centered on the screen.

5. LOCALIZATION

The NaviGATOR determines its geo-location by filtering and fusing a combination of sensor data.
The processing of all navigation data is done by a Smiths Aerospace North-finding Module (NFM),
which is an inertial navigation system. This module maintains Kalman Filter estimates of the
vehicle’s global position and orientation, as well as linear and angular velocities. It fuses internal
accelerometer and gyroscope data, with data from an external NMEA GPS, and external odometer.
The GPS signal provided to the NFM comes from one of the two onboard sensors. These include a
NavCom Technologies Starfire 2050, and a Garmin WAAS Enabled GPS 16. An onboard
computer simultaneously parses data from the two GPS units and routes the best-determined signal
to the NFM. This is done to maintain valid information to the NFM at times when only one sensor
is tracking GPS satellites. During valid tracking, the precision of the NavCom data is better than
the Garmin, and thus the system is biased to always use the NavCom when possible.

In the event that both units lose track of satellites, as seen during GPS outages, which occurs when
the vehicle is in a tunnel, the NFM will maintain localization estimates based on inertial and
odometry data. This allows the vehicle to continue on course for a period of time; however, the
solution will gradually drift and the accuracy of the position system will steadily decrease as long as
the GPS outage continues. After a distance of a few hundred meters, the error in the system will
build up to the point where the vehicle can no longer continue on course with confidence. At this
point, the vehicle will stop and wait for a GPS reacquisition. Once the GPS units begin tracking
satellites and provide a valid solution, the system corrects for any off course drift and continues
autonomous operation.

The Smith’s NFM is programmed to robustly detect and respond to a wide range of sensor errors or
faults. The known faults of both GPS systems, which generate invalid data, are automatically
rejected by the module, and do not impact the performance of the system, as long as the faults do
not persist for an extended period of time. If they do persist, then the NFM will indicate to a control
computer what the problem is, and the system can correct it accordingly. The same is true for any
odometer encoder error, or inertial sensor errors. The NFM will automatically respond to the faults
and relay the relevant information to control computers, so the system can decide the best course of
action to correct the problem.

6. PERCEPTION

This section of the paper discusses how the NaviGATOR collects, processes and combines sensor
data. Each of the sensor components is presented, organized by type: LADAR, camera, or “pseudo”
(a component that produces an output as if it were a sensor, but based on data from a file or
database). Finally, the Smart Arbiter sensor fusion component is discussed.

6.1. LADAR-based Smart Sensors
There are three Smart Sensors that rely on LADAR range data to produce their results: the Terrain
Smart Sensor (TSS), the Negative Obstacle Smart Sensor (NOSS) and the Planar LADAR Smart
Sensor (PLSS). All three components use the LMS291-S05 from Sick Inc. for range measurement.
The TSS will be described in detail and then the remaining two will be discussed only in terms of
how they are different than the TSS.

A laser range finder operates on the principle of time of flight. The sensor emits an eye-safe
infrared laser beam in a single-line sweep of either 180° or 100°, detects the returns at each point of
resolution, and then computes single line range image. Although three range resolutions are
possible (1°, 0.5° or 0.25°) the resolution of 0.25° can only be achieved with a 100° range scan.
The accuracy of the laser measurement is +/- 50 mm for a range of 1 to 20 m while its maximum
range is ~80 m. A high-speed serial interface card is used to achieve the needed high-speed baud
rate of 500 kB.

6.1.1. Terrain Smart Sensor
The sensor is mounted facing forward at an angle of 6° towards the ground. For the implementation
of the TSS, the 100° range with a 0.25° resolution is used. With this configuration and for nominal
conditions (flat ground surface, vehicle level), the laser scans at a distance of ~20 m ahead of the
vehicle and ~32 m wide. The TSS converts the range data reported by the laser in polar coordinates
into Cartesian coordinates local to the sensor, with the Z-axis vertically downward and the X-axis in
the direction of vehicle travel. The height for each data point (Z-component) is computed based on
the known geometry of the system and the range distance being reported by the sensor. The data is
then transformed into the global coordinate system required by the Traversability Grid, where the
origin is the centerline of the vehicle at ground level below the rear axle (i.e., the projection of the
GPS antenna onto the ground), based on the instantaneous roll, pitch, and yaw of the vehicle.

Each cell in the Traversability Grid is evaluated individually and classified for its traversability
value. The criteria used for classification are:

1. The mean elevation (height) of the data point(s) within the cell.
2. The slope of the best fitting plane through the data points in each cell.
3. The variance of the elevation of the data points within the cell

The first criterion is a measure of the mean height of a given cell with respect to the vehicle plane.
Keep in mind that positive obstacles are reported as negative elevations since the Z-axis points
down. The mean height is given as:

n
ZiΣ

=µ (1)

where µ is the mean height, ΣZi is the sum of the elevation of the data points within the cell and n is
the number of data points.

The second criterion is a measure of the slope of the data points. The equation for the best fitting
plane, derived using the least squares solution technique, is given as:

() bGGGS TT
optimum

1−
= (2)

where:
optimumS is the vector perpendicular to the best fitting plane

G is an n × 3 matrix given by:



















−−−
=

nnn yyx

zyx
zyx

G 222

111

 (3)

b is a vector of length ‘n’ given by:



















−
−

−
−

=

nD

D
D

b

0

02

01

 (4)

Assuming equal to 1, the above equation is used to find for the data points within each
cell. Once the vector perpendicular to the best fitting plane is known, the slope of this plane in the
‘x’ and ‘y’ directions can be computed. Chapter 5 of (Solanki, 2003) provides a thorough proof of
this technique for finding the perpendicular to a plane.

iD0 optimumS

The variance of the data points within each cell is computed as,

Variance ()
n

Zi
2µ−Σ

= (5)

A traversability value between 2 and 12 is assigned to each cell, depending on the severity values of
the mean height, slope, and variance information. A cell must contain a minimum of three data
points or else that cell is flagged as unknown. This also helps in eliminating noise. Each of the
parameters is individually mapped to a corresponding traversability value for a given cell. This
mapping is entirely empirical and non-linear. A weighted average of these three resulting
traversability values is used to assign the final traversability value.

6.1.2. Negative Obstacle Smart Sensor
The NOSS was specifically implemented to detect negative obstacles (although it can also provide
information on positive obstacles and surface smoothness like the TSS). The sensor is configured
like the TSS, but at an angle of 12° towards the ground. With this configuration and for nominal

conditions, the laser scans the ground at a distance
of ~10 m ahead of the vehicle. To detect a
negative obstacle, the component analyzes the
cases where it receives a range value greater than
would be expected for level ground. In such cases
the cell where one would expect to receive a hit is
found by assuming a perfectly horizontal
imaginary plane. As shown in Figure 10, this cell
is found by solving for the intersection of the
imaginary horizontal plane and the line formed by
the laser beam. A traversability value is assigned
to that cell based on the value of the range
distance and other configurable parameters. Thus
a negative obstacle is reported for any cell whose
associated range data is greater than that expected for an assumed horizontal surface. The
remaining cells for which range value data is received are evaluated on a basis similar to the TSS.

Imaginary
horizontal plane

Laser beam

Negative obstacle
(e.g., large pothole on the road or

a cliff on the side of the road)

Figure 10: NOSS implementation (side view)

6.1.3. Planar LADAR Smart Sensor
The sensor is mounted 0.6 m above the ground, scanning in a plane horizontal to the ground.
Accordingly, the PLSS only identifies positive obstacles and renders no opinion regarding the
smoothness or traversability of areas where no positive obstacle is reported. For the PLSS, the 180°
range with a 0.5° resolution is used. The range data from the laser is converted into the Global
coordinate system and the cell from which each hit is received is identified. Accordingly the
“number of hits” in that cell is incremented by one and then, for all the cells between the hit cell and
the sensor, the “number of missed hits” is incremented by one. Bresenham’s line algorithm is used
to efficiently determine the indices of the intervening cells.

A traversability value between 2 and 7 is assigned to each cell based on the total number of hits and
misses accumulated for that cell. The mapping algorithm first computes a score, which is the
difference between the total number of hits and a discounted number of misses in a cell (a discount
weight of 1/6 was used for the event). This score is then mapped to a traversability value using an
exponential scale of 2. For example, a score of 2 or below is mapped to a traversability value of
“7,” a score of 4 and below is mapped to a “6” and so on, with a score greater than 32 mapped to a
“2.” The discounting of missed hits provides conservatism in identifying obstacles, but does allow
gradual recovery from false positives (e.g., ground effects) and moving obstacles.

6.1.4. Field Testing
The parameters of the algorithm that affect the output of the component are placed in a
configuration file so as to enable rapid testing and tuning of those parameters. Examples of these
tunable parameters for the TSS and NOSS components are the threshold values for the slope,
variance, and mean height for mapping to a particular traversability value. For the PLSS, these
parameters include the relative importance of the number of hits versus misses in a given cell and a
weighting factor to control how much any one scan affects the final output.

By making these parameters easy to adjust, it was possible to empirically tune and validate these
components for a wide variety of surroundings such as a steep slopes, cliffs, rugged roads, small

bushes, and large obstacles, like cars. This approach also helped to configure each component to
work in the most optimum way across all the different surroundings. Finally, it helped in deciding
on the amount of data/time the component required to build confidence about an obstacle or when
an obstacle that was detected earlier has now disappeared from view (e.g., a moving obstacle).

6.2. Camera-based Smart Sensor
The Pathfinder Smart Sensor (PFSS) consists of a single color camera mounted in the sensor cage
and aimed at the terrain in front of the vehicle. Its purpose is to assess the area in the camera’s
scene for terrain that is similar to that on which the vehicle is currently traveling, and then translate
that scene information into traversability information. The PFSS component uses a high-speed
frame-grabber to store camera images at 30 Hertz.

Note that the primary feature used for analytical processing is the RGB (Red, Green, and Blue)
color space. This is the standard representation in the world of computers and digital cameras and
is therefore often a natural choice for color representation. Also RGB is the standard output from a
CCD-camera. Since roads typically have a different color than non-drivable terrain, color is a
highly relevant feature for segmentation. The following paragraphs describe the scene assessment
procedure applied to each image for rendering the Traversability Grid that is sent to the Smart
Arbiter.

6.2.1. Preprocess Image
To reduce the computational expense of processing large images, the dimensions of the scene are
reduced from the original digital input of 720 × 480 pixels to a 320 × 240 reduced image. Then, the
image is further preprocessed to eliminate the portion of the scene that most likely corresponds to
the sky. The segmentation of the image is based simply on physical location within the scene
(tuned based on field testing), adjusted by the instantaneous vehicle pitch. This very simplistic
approach is viable because the consequences of inadvertently eliminating ground are minimal due to
the fact that ground areas near the horizon will likely be beyond the 30 m planning distance of the
system. The motivation for this step in the procedure is that the sky portion of the image hinders
the classification procedure in two ways. First, considering the sky portion slows down the image
processing speed by spending resources evaluating pixels that could never be drivable by a ground
vehicle. Second, there could be situations where parts of the sky image could be misclassified as
road.

6.2.2. Produce Training and Background Data Sets
Next, a 100 × 80 sub-image is used to define the
drivable area and two 35 × 50 sub-images are used
to define the background. The drivable sub-image
is placed in the bottom, center of the image while
the background sub-images are placed at the
middle-right and middle-left of the image, which is
normally where the background area will be found,
based on experience (Lee, 2004) (see Figure 11).
When the vehicle turns, the background area that is
in the direction of the turn will be reclassified as a
drivable area. In this case, that background area

Figure 11: Scene Segmentation Scheme

information is treated as road area by the classification algorithm.

6.2.3. Apply Classification Algorithm
A Bayesian decision theory approach was selected for use, as this is a fundamental statistical
approach to the problem of pattern classification associated with applications such as this. It makes
the assumption that the decision problem is posed in probabilistic terms, and that all of the relevant
probability values are known. The basic idea underlying Bayesian decision theory is very simple.
However this is the optimal decision theory under Gaussian distribution assumption (Morris, 1997).

The decision boundary that was used is given by:

1

1 1 1/ 2 1/ 2
1

1
2 2 2/ 2 1/ 2

2

1 1exp () ()
(2) | | 2

1 1exp () ()
(2) | | 2

T
d

T
d

π

π

−

−

 − − ∑ − ∑  

= − − ∑ ∑  

x µ x µ

x µ x µ −
 (6)

where 1µ and are the mean vector and covariance matrix of the drivable-area RGB pixels in the

training data,
1Σ

2µ and are those of the background pixels and x contains RGB values of the entire

image.
2Σ

The decision boundary formula can be simplified as

1
1 1 1 2 2 2() () () (T T−− ∑ − = − ∑ −x µ x µ x µ x µ1)− (7)

A block-based segmentation method is used to reduce the segmentation processing time. 4×4 pixel
regions are clustered together and replaced by their RGB mean value, as follows:

(,) (,)2
1 1

1 N N
L
x y i j

i j

P
N

µ
= =

= ∑∑ L (8)

where µ(x,y) is the new pixel mean value for the 4×4 block, P is the raw pixel data, (i, j) is the raw
pixel orientation, (x, y) is the new pixel orientation, {1, 2, 3}L ∈ for RGB, and N is the block size.

The clusters, or blocks, are then segmented, and the result, as shown in Figure 12 (a), has less noise
compared with pixel based approaches, Figure 12 (b). Also the segmentation process is
accomplished faster than pixel-based classification. A disadvantage, however, is that edges are
jagged and not as distinct.

(a)

(b)

Figure 12: Processed Images

6.2.4. Transform to Global Coordinate System
After processing the image, the areas classified as drivable road are
converted by perspective transformation estimation into the global
coordinates used for the Traversability Grid (Criminisi, 1997). The
perspective transformation matrix is calculated based on camera
calibration parameters and the instantaneous vehicle heading.
Finally, the PFSS assigns a value of 12 (highly traversability) to
those cells that correspond to an area that has been classified as
drivable. All other cells are given a value of 7 (neutral). Figure 13
depicts the PFSS Traversability Grid data after transformation into
global coordinates.

 Figure 13: Transformed Image

6.3. Pseudo Smart Sensors
There are two Smart Sensors that produce Traversability Grids based on stored data: the Boundary
Smart Sensor (BSS) and the Path Smart Sensor (PSS).

The BSS translates boundary knowledge, defined as boundary
polygons prior to mission start, into real-time Traversability Grids,
which assures that the vehicle does not travel outside the given
bounds. The BSS is responsible for obtaining the boundary
information from a local spatial database. The BSS uses this data to
determine the in-bounds and out-of-bounds portions of the
traversability grid for the instantaneous location of the vehicle. The
BSS also has a configurable “feathering” capability that allows the
edge of the boundary to be softened, creating a buffer area along the
edges. This feature provides resilience to uncertainties in the
position data reported by the GPOS component. Figure 14 shows a
typical grid output from the BSS indicating the vehicle’s location
within the grid and the drivable region around it. By clearly
demarking areas of the grid as out-of-bounds, the BSS allows the
Smart Arbiter to summarily dismiss computation of out-of-bounds
grid cells and the Reactive Driver to prune its search tree of potential
plans.

Figure 14: Traversability
Grid showing boundary

data

The PSS translates the a priori path plan, stored as a “path file” prior
to mission start, into real-time Traversability Grids. The PSS uses
this path data to superimpose the originally planned path onto the
traversability grid based on the instantaneous location of the vehicle.
The PSS has a configurable “feathering” capability that allows the
width of the path to be adjusted and the edges of the path to be
softened. This feature also allows the engineer to select how
strongly the originally planned path should be weighted by setting
the grid value for the centerline. A 12 would cause the arbiter and
planner to lean towards following the original plan even if the
sensors were detecting a better path, while a 10, which is what was
used at run-time, would make the original plan more like a
suggestion that could be more easily overridden by sensor findings.
Figure 15 shows a typical grid output from the PSS indicating the
vehicle’s location within the grid and the feathered a priori planned
path flowing through the in-bounds corridor.

6.4. Sensor Fusion
With the Traversability Grid concept in place to normalize the outputs o
the data fusion task becomes one of arbitrating the matching cells into
that cell for every in-bounds cell location in the grid.

6.4.1. Grid Alignment
First, the Smart Arbiter must receive and unpack the newest message fro
adjust its center-point to match that of the Arbiter (assuming that the veh
instant in time when the sensor’s message was built and the instant i
output message is being built). This step must be repeated for each sens
The pseudo code for this process is:

 Determine current location of current of vehicle

 Adjust center-point of Smart Arbiter Grid to match current locatio

 For each active Smart Sensor:
 Adjust center-point of Smart Sensor Grid to match current

At this point, all input grids are aligned and contain the latest findings
support the alignment of Traversability Grids with current vehicle p
buffer” object was introduced. This allows the system to use pointer a
(i.e., change the row and column values of its center-point) without copy

6.4.2. Data Arbitration
Now the Smart Arbiter must simultaneously traverse the input grids, c
data from each corresponding cell into a single output value for that row
cells have been treated in this fashion, the Smart Arbiter packs up its out
it on the Reactive Driver.
Figure 15: Traversability
Grid showing a priori path

data
f a wide variety of sensors,
a single output finding for

m a given sensor and then
icle has moved between the
n time when the arbitrated
or that has sent a message.

n

 location

from its source sensor. To
osition, a so-called “torus
rithmetic to “roll the grid”
ing data.

ell-by-cell, and merge the
/column location. Once all
put grid message and sends

For early testing, a simple average of the input cell values was used as the output cell value. Later
work investigated other algorithms, including heuristic ones, to perform the data fusion task. The
Smart Arbiter component was designed to make it easy to experiment with varying fusion
algorithms in support of on-going research. The algorithm that was used for the DGC event
entailed a two-stage heuristic approach. Stage 1 is an “auction” for severe obstacles for the cell
position under consideration. Stage 2 then depends on the results of the “auction.” If no sensor
“wins” the auction, then all of the input cells at that position are averaged, including the arbiter’s
previous output value for that cell. The pseudo code for this algorithm is:

 For each cell location:

 IF any sensor reported a “2”,
THEN decrement the Arbiter’s output cell by decr (min = 2)

 ELSE IF any sensor reported a “3”,

THEN decrement the Arbiter’s output cell by decr/2 (min = 3)

 ELSE
 Arbiter’s output cell = Average(input cells + Arbiter’s prior output cell)

where decr is a configurable parameter (= 2 for the Grand Challenge Event).

Thus, a sensor must report a severe obstacle for several iterations in order for the arbiter to lower its
output value, thus providing a dampening effect to help circumvent thrashing due to a sensor’s
output values. The averaging of input values along with the arbiter’s previous output value also
provides a dampening effect.

The Smart Arbiter, using the algorithm described here, was able to achieve its specified processing
cycle speed of 20 Hz. The premise used for all algorithms that were explored was to keep the
arithmetic very simple and in-place since the data fusion task demands can reach 2 million
operations per second just to process the algorithm (7 grids/cycle * 14,641 cells/grid * 20
cycles/second). Thus, complex, probabilistic-based and belief-based approaches were not explored.
However, adding highly traversable cells to the auction (i.e., 11’s and 12’s) and post-processing the
output grid to provide proximity smoothing and/or obstacle dilation were explored, but none of
these alternatives provided any better performance (in the sense of speed or accuracy) than the one
used for the event.

7. REAL-TIME PLANNING AND VEHICLE CONTROL

The purpose of online planning and control is to autonomously drive the NaviGATOR through its
sensed environment along a path that will yield the greatest chance of successful traversal. This
functionality is compartmentalized into the Reactive Driver (RD) component of the NaviGATOR.
The data input to this component include the sensed cumulative traversability grid, assembled by
the Smart Arbiter component, vehicle state information, such as position and velocity, and finally
the a priori path plan, which expresses the desired path for the vehicle to follow sans sensor input.
Given this information, the online real-time planning and control component, seeks to generate low-
level actuator commands, which will guide the vehicle along the best available path, while avoiding
any areas sensed as poorly traversable.

7.1. Receding Horizon Controller
The objective of the RD component is to generate an optimized set of the actuator commands
(referred to as a “wrench” in JAUS), which drives the vehicle through the traversability grid and
brings the vehicle to a desired goal state. The NaviGATOR accomplishes this real-time planning
and control simultaneously, with the application of an innovative heuristic-based receding horizon
controller.

Receding horizon is a form of model predictive control (MPC), an advanced control technique, used
to solve complex and constrained optimization problems. In this case, the problem is to optimize a
trajectory through the localized traversability space, while adhering to the nonholonomic dynamics
constraints of the NaviGATOR. An in-depth explanation and analysis of the technique is provided
in (Mayne, 2000), and the application of suboptimal MPC to nonlinear systems is given in
(Scokaert, 1999). This method was selected because it unifies the higher level planning problem
with the lower level steering control of the vehicle. Separate components are not needed to plan the
geometry of a desired path, and then regulate the vehicle onto that path.

The controller attempts to optimize the cost of the trajectory by employing an A* search algorithm
(Hart, 1968). The goal of the search is to find a set of open-loop actuator commands that minimize
the cost of the trajectory through the traversability space, and also bring the vehicle to within a
given proximity of a desired goal state. The goal state is estimated as the intersection of the a priori
path with the boundary of the traversability grid. As the vehicle nears the end of the path, and there
is no longer an intersection with the grid boundary, the desired goal state is simply the endpoint of
the last a priori path segment.

Special consideration was given to formulating the units of cost (c) for the search. An exponential
transformation of the traversability grid value (t), multiplied by distance traveled (d) was found to
work best. The cost equation is given here, where the exponent base is represented by (b):

tdbc = (9)

Thus the cost of traversing a grid cell scales nonlinearly with its corresponding traversability value.
An intuitive comparison is best to describe the effect of this transformation and why it works well:
with a linear transformation, the cost of a path traveling through a traversable value of two is only
twice as high as the same path through a value of one. (Note, these values are just given for the

purpose of an example and are not actually encountered in the NaviGATOR system.) Therefore,
the search would possibly choose a path driving through up to twice as much distance in the value
of one, rather than a much shorter path driving through a value of two. Whereas, an exponential
transformation ensures that there is always a fixed ratio between neighboring integer traversability
values. Thus this ratio can be used as a tuning parameter to allow the algorithm to achieve the
desired tradeoff between the length and cumulative traversability cost of a selected path.
Conveniently, the ratio used for tuning is equal to the base of the exponent given in the cost
equation.

Closed loop control with the receding horizon controller is achieved by repeating the optimization
algorithm as new traversability data are sensed and vehicle state information is updated. Thus
disturbances, such as unanticipated changes in traversability or vehicle state, are rejected by
continually reproducing a set of near optimal open loop commands at 20 Hz, or higher.

The search calculates different trajectories by generating
input commands and extrapolating them through a vehicle
kinematics model. The cost of the resulting trajectory is
then calculated by integrating the transformed traversability
value along the geometric path that is produced through the
grid. The search continues until a solution set of open-loop
commands is found that produce a near optimal trajectory.
The first command in the set is then sent to the actuators,
and the process is repeated. A typical result of the planning
optimization is shown in (see Figure 16, where the dark line
is the final instantaneous solution).

Figure 16: Sample planning result
through traversability grid

Rather than plan through the multidimensional vector of
inputs, i.e. steering, throttle, and brake actuators, the search
attempts to optimize a one dimensional set of steering
commands at a fixed travel speed; the control of the desired
speed is handled separately by a simple PID controller. Since it may be necessary to change the
vehicle’s desired speed in order to optimize the planned trajectory through the search space, extra
logic is included in the search to either speed up or slow down the vehicle according to the
encountered data.

7.2. Vehicle Model
The kinematics model used for response prediction of an input command to the system is that of a
front-wheel steered, rear-wheel drive vehicle. The input signals to this model are the desired
steering rate (u), and linear vehicle velocity (v). The model states include the vehicle Cartesian
position and orientation (x, y, θ) and the angle of the front steering wheels (φ) with respect to the
vehicle local coordinate frame. The kinematics equation is given here, where (b) represents the
wheel base of the vehicle:






























=



















u
v

b

y
x

10

0tan1
0sin
0cos

ϕ
θ
θ

ϕ
θ
&

&
&

&

 (10)

In the algorithm implementation, additional constraints were added to the model to limit the
maximum steering rate, and also the maximum steering angle. These values were determined
experimentally and then incorporated into the software as configurable parameters. Also, due to the
complex nature these system dynamics, obtaining a solution to the differential equations is not
feasible; therefore a series of simplifications and assumptions were made to allow for fast
computation of future state prediction. The underlying assumption is that, since the resolution of
the traversability grid is relatively low (0.5 m), very accurate estimates for the vehicle’s predicted
motion are not necessary. The assumptions made were that for a short period of time or traveled
distance, the curvature of the path that the vehicle followed was near constant, and this constant
curvature could be taken as an average over the predicted interval. Thus the predicted path
trajectory was simply a piece-wise set of short circular arcs. An implementation of Bresenham’s
algorithm (Bresenham, 1977) was used to integrate the traversability grid value along the
determined arcs.

As an additional measure for vehicle stability, a steering constraint was added to limit the maximum
steering angle as a function of speed (v) and roll angle (Φ) (due to uneven terrain). The goal of this
constraint was to limit the maximum lateral acceleration (ny) incurred by the vehicle due to
centripetal acceleration and acceleration due to gravity (g). Thus, if the vehicle were traveling on a
gradient that caused it to roll to any one direction, the steering wheels would be limited in how
much they could turn in the opposite direction. Additionally, as the vehicle increased in speed, this
constraint would restrict turns that could potentially cause the NaviGATOR to roll over. This
constraint is given by the following equation:

 (11) maxn
k

+±
=

()
2max

sin
v

gy Φ

The value for maximum lateral acceleration was determined experimentally with the following
procedure. A person driving the NaviGATOR would turn the wheels completely to one direction,
and then proceed to drive the vehicle in a tight circle slowly increasing in speed. The speed in
which the driver felt a lateral acceleration that was reasonably safe or borderline comfortable was
recorded, and the acceleration value was calculated. This was done for both left and right turns, and
the minimum of the two values were taken for conservatism. The value found to be a reasonable
maximum was, 4 mps2, and was hard coded as a constraint to the vehicle model.

7.3. Desired Speed Logic
The determination of the commanded and planned vehicle speed is derived from many factors. The
RD receives several sources of requested speed, calculates its own maximum speed, and then
chooses the minimum of these to compute the throttle and brake commands to the vehicle. Each of
the input speed commands was calculated or originated from a unique factor of the vehicles desired
behavior. At the highest level, vehicle speed was limited to a maximum value that was determined

experimentally based on the physical constraints of the NaviGATOR platform. The next level of
speed limiting came from the a priori path data, which itself was limited to the speeds provided by
the RDDF corridor. Additionally, the speed provided by the path file can be assessed to see if a
slower desired speed is approaching ahead of the vehicle. Therefore, if it is about to become
necessary to slow down the vehicle, the RD can allow for natural deceleration time. Also, desired
speed as a function of pitch was added to slow down the vehicle on steep ascents or descents. This
ensures that the NaviGATOR does not drive too fast while encountering hilly terrain.

Another important speed consideration resides with the planning search. Embedded in the search
itself is the ability to slow the vehicle down in the cases where the desired trajectory comes within
proximity to poorly traversable grid cells. The planner uses a lookup-table that enumerates all of
the maximum speeds that the vehicle is allowed to drive while traveling through areas of low
traversability. Thus, if the vehicle attempts to avoid an obstacle or travel down a narrow road with
hazardous terrain to either side, it is commanded to slow down, thus providing a lower risk while
allowing for a more comprehensive search to find the best course of action. Also, if the search was
unable to find a reasonable solution (i.e., only a solution that goes through very poor areas was
found), then the desired speed is lowered. In its next iteration, the RD attempts to find a better
solution at that slower speed. This approach is reasonable because the vehicle has greater
maneuverability at low speed, and therefore the planner has a better chance of finding a less costly
route to its goal.

Additional speed control is provided by a Situation Assessment component consisting of a Long
Range Obstacle Specialist and a Terrain Ruggedness Specialist. The Long Range Obstacle
Specialist uses a data feed from the PLSS LADAR to determine whether the space directly in front
of the vehicle is free of obstacles beyond the 30 m planning horizon (i.e., 30 m out to the 80 m
range limit of the LADAR). The Terrain Ruggedness Specialist uses the instantaneous pitch rate
and roll rate of the vehicle (provided by the Velocity State Sensor) to classify the current terrain as
“Smooth,” “Rugged,” or “Very Rugged.” Based on the Long Range Obstacle State and Terrain
Ruggedness State, with appropriate hysteresis control and dampening, the permitted speed of the
vehicle is selected and sent to the RD. For example, if the terrain is Smooth and no Long Range
Obstacles are detected, then the RD is permitted to drive the vehicle up to its highest allowable
speed and thus faster than an empirically derived Obstacle Avoidance speed of 7.2 mps (16 mph).

7.4. Controller Fault Detection
There are four faults that the RD is capable of detecting during normal operation of the vehicle.
They are the cases where the NaviGATOR has: become blocked, become stuck, collided with an
obstacle, or gone out of the bounds of the RDDF. In each of these scenarios it is possible for the
system to take corrective action. The most commonly found of these errors is the blocked
condition. In this case, there is no viable path planning solution, even when the search is attempting
to plan a trajectory at the vehicle’s most maneuverable speeds. It was determined through analysis
of the collected data that this case was most often occurring due to sensor misclassifications. The
corrective action in these scenarios is to simply wait a short period of time for the sensor data to
correct itself, allowing the planner to find a solution. Sometimes, the data will not correct without
the vehicle changing its position, therefore an active correction is taken to automatically “nudge”
the vehicle forward after a brief wait, and continue with the planned path once the blockage is clear.

8. TESTING AND PERFORMANCE

This section of the paper summarizes the testing and performance that occurred at each of several
key venues. This section is supplemented by a video depicting the NaviGATOR operating in each
of these venues (see multimedia).

8.1. The CIMAR Lab
Testing began with the JAUS messaging system on the ten computers that would drive the
NaviGATOR. The JAUS messaging would need to be capable of sending up to 500 messages per
second per node for over 14 hours. On race day, over 20 million JAUS messages were actually sent
and received. Next, initial testing of the individual JAUS components, discussed in this paper, took
place in the spring of 2005 primarily in the CIMAR lab at the University of Florida. The goal was
to get each component working by itself, “on the bench” in a controlled laboratory environment. To
support bench testing, a simple vehicle simulator component was devised that sends out position-
and velocity-related JAUS messages as if the vehicle were moving through an RDDF corridor.
Once each individual component had been successfully tested and declared operational, then
various combinations of components were integrated and tested together as the system began to take
shape. The base vehicle platform had been assembled during the same period of time as the various
JAUS components were being bench tested. With both the vehicle assembled and the JAUS
components operational, the various JAUS components were then mounted in the NaviGATOR.

8.2. The Citra Test Site
Next, it was time to take the system to the field. On 20 April 2005, a test site was designed and
constructed at the University of Florida’s Plant Science Unit located in Citra, Florida. The course
was laid out in an open field and consisted mainly of a figure eight, an oval, and several left and
right sharp turns (see Figure 17). Various segments were added to this course to replicate terrain
that was expected in the desert. While this course had a few tough obstacles it was basically the
“safest” place to test. This was Team CIMAR’s main test site and was used for extensive
development of the system as well as the location where the DARPA site visit took place on 6 May
2005. On 20 May 2005 the NaviGATOR was put into a ½ mile loop and it ran for 12 miles before
stopping due to a minor problem. This was the furthest it would run prior to heading west in
September as it spent the next three months undergoing major upgrades to both hardware and
software.

e
Figure 17: The Citra Test Sit

Part of the Citra testing effort was devoted to initial tuning of the sensors. Figures 18 and 19 depict
scenes of the terrain at Citra and the accompanying Smart Sensor output, as captured during the
sensor tuning process. Figure 18a shows evenly spaced orchard poles while Figure 18b shows a
snapshot of the PLSS Traversability Grid while traveling on the graded road in which the poles
have been clearly detected and scored as impassable obstacles. This area was specifically chosen to
assure that the output of the PLSS accurately maps obstacles onto the grid. Note that the PLSS
algorithm has been tuned to accurately locate the poles, even though most of them are occluded for
periods of time as the vehicle moves past them. Figure 19a shows a roadway with rough terrain
appearing to the left of the vehicle when traveling in the indicated direction. Figure 19b shows a
snapshot of the TSS Traversability Grid for that same section of road, having scored the rough area
as somewhat undesirable, but not absolutely blocked (i.e., 4’s, 5’s and 6’s).

 (a) (b)
Figure 18: PLSS Testing Images.

 (a) (b)
Figure 19: TSS Testing Images.

By 20 August 2005 the major hardware and software upgrades were complete and the system was
ready for one last round of testing at the Citra site prior to heading west. On 25 August 2005,
however, while performing a high-speed radar test, the vehicle suffered a serious failure. One of the
rear shocks snapped and the engine and frame dropped onto the rear drive shaft and odometer gear.
The sudden stop also caused the front sensor cage struts to snap and the sensor cage collapsed
forward. The causes of the failures were determined and the system was re-designed and re-built in
approximately one week. With the damage repaired, the NaviGATOR returned to Citra for several
days to verify the system was operational and ready to graduate to the desert for a more serious
round of testing.

8.3. The Stoddard Valley OHV Area
On 11 September 2005, the NaviGATOR headed west to the Stoddard Valley Off Highway Vehicle
(OHV) Area near Barstow, California (see Figure 20). The team first attempted some short tests
runs to ensure system operation. This also marked the first times the team had run the NaviGATOR
with a chase vehicle setup (see Figure 21a). These system tests were done in the OHV area of
Stoddard Valley (marked 1 in Figure 20). This test route is approximately 4 miles long and
included the first serious autonomous uphill and downhill climbs, allowing the team to evaluate the
performance of the system during both accent and decent maneuvers. Speeds during these tests
stayed in the 10 mph range. Overall the system showed an almost surprising ability to handle the
terrain, prompting the team to accelerate their efforts in finding more challenging test paths.
Following these successful tests the team moved the vehicle on to Slash X.

Slash X was the site of the start of the DARPA
Grand Challenge 2004 (DGC04) event and
during their time there Team CIMAR shared the
area with several other DARPA Grand
Challenge 2005 teams. First, the team ran the
start and first mile of the DGC04 route (site 2 in
Figure 20). This allowed the team to test and
tune the sensors specifically against the barbed
wire fence that was the downfall of the 2004
NaviGATOR. This path also provided a good
place to test higher speed navigation. Between
path 2 and an open area behind Slash X, the
team was able to test and tune the NaviGATOR
up to 30 mph, with an empirically determined
obstacle avoidance speed of 16mph.

Figure 20: Stoddard Valley OHV Test Sites

Sunday 18 September 2005 turned out to be a
historic day for Team CIMAR. Team TerraMax
graciously gave us one of their RDDFs through
the desert (labeled site 3 in Figure 20). The
team took the file and after several false starts
finally launched the vehicle at 4pm in the
afternoon. Path 3 is approximately 20 miles
each way (with a built-in turnaround). The

speed testing had not yet been completed and the first test was done at a cap of 10 mph. The team
had never seen nor traversed this path prior to this first test. Not knowing exactly where they were
going, the NaviGATOR led the way (see Figure 21b). Surprising even the team members, the
NaviGATOR successfully navigated the entire 20 mile distance on the first try, stopping only to
give its human handlers time to drink and rest.

 (a) (b)
Figure 21: Testing in the Stoddard Valley OHV Area

Over the following week, the team tested the NaviGATOR several more times on this course,
reaching speeds of 25 mph and completing the entire 40-mile course several times. The path
included long straight roads, a mountain climb and areas covered by power lines; all terrain the
team expected to encounter during the DARPA Grand Challenge event.

The last significant area of testing in Stoddard Valley (marked 4 in Figure 20) was another portion
of the DGC04 event. Known as Daggett Ridge, this was the area that the farthest teams had reached
during the previous event and consisted of very dangerous mountain switchbacks and drop-offs of
hundreds of feet. The sensor team made several trips with the vehicle to tune and test the sensor
suite on the path during manual drive, especially focusing on detecting negative obstacles (in the
form of cliffs and washouts).

During two weeks of dawn-to-dusk testing in the Stoddard OHV area, the NaviGATOR went from
a personal best of 12 miles in a 1/2-mile circuit to 40-mile runs across miles of desert terrain. The
team was able to scale the system quickly, going from 10 mph runs to 25 mph with reliable obstacle
avoidance at speeds up to 16 mph, along with tuning and validating the software that dynamically
determines which speed should be used. The two weeks of testing in the desert was perhaps the
best time spent testing during the entire DARPA Grand Challenge project, both in progress for the
vehicle and the team members. While more testing time would have been very useful, on 27
September 2005 the team left for the California Speedway and the National Qualification Event.

8.4. The National Qualification Event
Immediately following the opening ceremony, the NaviGATOR was the fourth team in line for the
first qualification run. The qualification course is shown in Figure 22. It consisted of a 2.3 mile

long path with three parked cars, a rough terrain section, a simulated mountain pass, a tunnel, and
finally a wooden “tank trap” obstacle.

Figure 22: Qualification course at the California Speedway.

The NaviGATOR completed the entire course on the first attempt. Figure 23 depicts the
NaviGATOR on the NQE course. However, three lane-marking cones had been hit and the tank
trap obstacle at the end of the course had been slightly brushed. Two changes were made to the
NaviGATOR for the second run. The desired speed on the high-speed section of the course was
increased from 16 mph to 20 mph and the dilated
size of the perceived obstacles was increased in an
attempt to completely miss the tank trap obstacle.
During the second run, the NaviGATOR began
oscillating and became unstable on the high-speed
section and the run was aborted. The problem
was that the high-speed section of the
qualification course was on pavement whereas all
high-speed testing had been conducted off-road.
The disturbances caused by the constant four-
wheel drive on pavement were responsible for the
oscillation. Figure 23: NaviGATOR at NQE

For the third run on the qualification course, all parameters were reset to those used during the first
run. All went well until the vehicle scraped the concrete wall in the mountain pass section of the
course, snapping the front steering linkage. The vehicle was quickly repaired. For future runs, the
path centerline as reported by the Path Smart Sensor (PSS) was shifted twelve inches away from the
wall in the mountain pass section. After this, the qualification course was successfully completed
two more times. In summary, the NaviGATOR completed the entire qualification course three out
of five times and the team was selected by DARPA to compete in the desert race.

8.5. The Race
The team received the RDDF
containing the course waypoints in the
early morning of 8 October 2005. Two
hours were allocated for processing the
data, which primarily consisted of
setting desired speeds for each section
of the course. The path file was then
uploaded to the vehicle and by 9:30 am
the NaviGATOR was off. After leaving
the start gate, the NaviGATOR headed
off into the desert and then circled
around past the crowd at about the
eight-mile mark. The NaviGATOR
headed past the spectators at
approximately 24 mph, performing very
well at this point in the race (see Figure
24). After following the dirt road a bit
further, the NaviGATOR encountered a
paved section of the course and started
to oscillate. It stopped and did a couple of turns, criss-crossed the road, and then regained its
composure and headed back in the right direction. As during the second qualification run, the
desired speed was set too high for operation on pavement.

Figure 24: NaviGATOR at Passing the Stands at the
2005 DARPA Grand Challenge Event

The NaviGATOR next flawlessly traversed a bridge over a railroad track and disappeared into the
brown desert haze. Shortly before 11 a.m., the team received word from the chase truck that was
following NaviGATOR that the vehicle had inexplicably run off the road and stopped.
NaviGATOR appeared reluctant to move forward into and out of low brush in front of it, although
its off-road capabilities would have easily carried it through. After several attempts to pause and
restart the NaviGATOR, the driver called back to say the vehicle was moving, but slowly and still
off the road. After about a half mile of starting, stopping, and driving very slowly over brush, it
regained the road and took off again at high speed following the road perfectly. However, after
about another mile, the vehicle again went off the road and this time stopped in front of a bush.
This time, DARPA officials quickly declared the NaviGATOR dead. The time was shortly before
noon, and NaviGATOR had traveled past the 24-mile marker. NaviGATOR placed 18th among the
23 finalists. A total of five teams actually completed the entire course, with Stanford’s Stanley
taking the $2 million prize for the shortest time of six hours, 53 minutes and 58 seconds.

8.6. What stopped the NaviGATOR?
Team members went out on the course the day following the race and found the NaviGATOR tire
tracks at the two locations where the vehicle went off the right side of the road. From this
information and data that was logged on the vehicle, it appears that the calculated GPS position
drifted by approximately twenty feet causing the vehicle to want to move to the right of the actual
road. From the tire tracks and from the traversability grid (see Figure 25), it was apparent that the
vehicle wanted to move to the right, but the obstacle avoidance sensors were detecting the bushes
and berms on the right side of the road. From the vehicle’s perspective (see Figure 25) it appeared

that the corridor was littered with objects and the best it could
do was to travel along the left side of the corridor on the verge
of going out of bounds on the left. In reality, the vehicle was
hugging the right side of a very navigable dirt road, however
most of the open road was being classified as out of bounds.

Both times that the vehicle went off course were due to the fact
that the right side became free of obstacles and the vehicle
attempted to move to the center of its incorrect corridor. Figure
26 shows the location where the NaviGATOR moved off the
course for the second time whereupon DARPA officials stopped
it. In summary, a twenty-foot position error caused a
corresponding shift of the boundary smart sensor that eliminated
the actual sensed road as an option to the planner. Figure 25: Traversability Grid

(during time of position
system drift)

Figure 26: Location where NaviGATOR veered off the course and was stopped.

9. CONCLUSION

Overall the team was very pleased with the NaviGATOR system. The base vehicle is very capable
and has excellent mobility in very rough terrain. The obstacle and terrain detection sensors and
sensor integration approach worked very well as did the reactive planner module. Overall, the
control loop (from sensed objects to determination of vehicle actuation parameters) operated at a
rate of over 20 Hz. Also, a significant contribution of the effort was to show that JAUS could be
used successfully in a situation such as this and that the standardized messaging system defined by
JAUS could greatly simplify the overall integration effort.

There are four key areas that are currently being pursued by the team. The first two of these focus
on resolving specific issues encountered while competing at the Grand Challenge event. The other
two are improvements that will make the NAVIGATOR system more resilient to such problems
when they occur:

1. Stability. The stability of the controller can be improved simply by putting additional
time into getting the control parameters properly tuned. The goal is to achieve stable control
at 25mph on pavement and 30mph on dirt in the near future.

2. Position System. We are currently improving the accuracy of the position system’s
estimate of error so that when the output of the system is degraded it can inform the rest of
the system appropriately. A better version of the GPS switching code is being implemented
that will allow the system to decide which GPS to use as the input to the NFM, the NavCom
or the Garmin, based on which is better at the time. At the same time, NavCom and Smiths
Aerospace are working together to further improve the overall accuracy of the system.

3. Dynamic BSS and PSS. As discussed earlier, the reason the NAVIGATOR got stuck off
the road in the race was due to a position error causing the Boundary Smart Sensor to shift
the drivable corridor off the road. To prevent this from happening in the future, the width of
the corridor created by the BSS will be made a function of the position system root mean
square error (RMS). For example, if the position RMS is good then the BSS corridor in the
grid will be correspondingly tight but when the position RMS degrades then the BSS will
stroke a correspondingly wide corridor through its traversability grid. In this way, the BSS
will no longer eliminate the road as an option, thus allowing the sensors to find the road off
to the side. Similarly, the weight of the Path Smart Sensor (PSS) can be adjusted such that
its recommended path is painted with tens when the position RMS is good, but only sevens
or eights when the position RMS degrades, thus reducing its influence accordingly.

4. Adaptive Planning Framework. A more extensive implementation of the situation
assessment specialists and high-level decision-making capabilities is currently underway.
This will allow the NaviGATOR to do things like determine when it has become blocked
and decide how to best fix the problem, such as backing up and re-planning. Other
examples include altering the aggressiveness of the plan (risk) based on mission parameters
and altering the contribution of a given sensor based on the environmental situation.

The first three items on this list are relatively short term and should be completed before this paper
is published. With a tuned controller, the position system upgraded, and the BSS and PSS
dynamically adjusting to the position RMS, the NaviGATOR should be capable of completing the
2005 DARPA course in under10 hours. The maturation of the Adaptive Planning Framework will
likely continue into the future for some time.

In retrospect, the team would have benefited from more testing time in the California desert. The
issues associated with the positioning system and the high-speed control on pavement could have
been resolved. However, the project was very successful in that an entirely new vehicle system was
designed, fabricated, and automated in a nine-month period, ready to compete in the 2005 DARPA
Grand Challenge. This was a monumental effort put on an aggressive time and resource schedule.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the work of all the DARPA staff members who organized
and operated a very successful event. Also thanks are given to the members of the JAUS Working
Group whose efforts are leading to an open architecture that will promote interoperability of
military robotic systems. Finally, the authors gratefully acknowledge the technical and financial
support of the team’s Title Sponsor, Smiths Aerospace.

REFERENCES

Bresenham, J. (1977). A Linear Algorithm for Incremental Digital Display of Circular Arcs.
Communications of the ACM, 22(2), 100-106.

Criminisi, A., Reid, I., and Zisserman, A. (1997). A Plane Measuring Device [Electronic Version].
Retrieved April, 2006 from http://www.robots.ox.ac.uk/~vgg/presentations/bmvc97/criminispaper/

Elfes, A. (1989). Using Occupancy Grids for Mobile Robot Perception and Navigation.
IEEEComputer Magazine, pp 46-57.

Hart, P. E., Nilsson, N.J., Raphael, B. (1968). A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, SSC4(2), 100-107.

JAUS. (2005). Joint Archtiecture for Unmanned Systems Reference Architecture, version 3.2: JAUS
Working Group (http://www.jauswg.org/).

Lee, J., Crane, C., Kim, S., and Kim J. (2004). Road Following in an Unstructured Desert
Environment using Monocular Color Vision as Applied to the DARPA Grand Challenge. Paper
presented at the ICCAS2005, Seoul.

Mayne, D., Rawlings, J., Rao, C., Scokaert, P. (2000). Constrained Model Predictive Control:
Stability and Optimallity. Automatica, 36(6), 789-814.

Morris, R. D., Descombes, X., and Zerubia, J. (1997). Fully Bayesian image segmentation - an
engineering perspective. Proceedings of IEEE International Conference on Image Processing.

http://www.robots.ox.ac.uk/~vgg/presentations/bmvc97/criminispaper/
http://www.jauswg.org/)

Scokaert, P., Mayne, D., Rawlings, J. (1999). Suboptimal Model Predictive Control (Feasibility
Implies Stability). IEEE Trans. Automatic Control, 44, 648-652.

Seraji, H. (2003). New Traversability Indices and Traversability Grid for Integrated Sensor/Map-
Based Navigation. Journal of Robotic Systems, 20(3), 121-134.

Solanki, S. (2003). Implementation of laser range sensor and dielectric laser mirrors for 3D
scanning of glove box environment. Unpublished Master's Thesis, University of Florida,
Gainesville.

Thrun, S. (2003). Learning Occupancy Grid Maps with Forward Sensor Models. Autonomous
Robots, 15, 111-127.

Ye, C., and Borenstein, J. (2004). T-transformation: Traversability Analysis for Navigation on
Rugged Terrain. Proceedings of the Defense and Security Symposium, Unmanned Ground Vehicle
Technology VI (OR54).

	High-Level Architecture
	Smart Sensor Concept
	Concept of Operation
	LADAR-based Smart Sensors
	Terrain Smart Sensor
	Negative Obstacle Smart Sensor
	Planar LADAR Smart Sensor
	Field Testing

	Camera-based Smart Sensor
	Preprocess Image
	Produce Training and Background Data Sets
	Apply Classification Algorithm
	Transform to Global Coordinate System

	Pseudo Smart Sensors
	Sensor Fusion
	Grid Alignment
	Data Arbitration

	Receding Horizon Controller
	Vehicle Model
	Desired Speed Logic
	Controller Fault Detection
	The CIMAR Lab
	The Citra Test Site
	The Stoddard Valley OHV Area
	The National Qualification Event
	The Race
	What stopped the NaviGATOR?

