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ABSTRACT 

 
This paper describes the development of an autonomous vehicle system that participated in the 2005 
DARPA Grand Challenge event.  After a brief description of the event, the architecture, based on 
version 3.0 of the DoD Joint Architecture for Unmanned Systems (JAUS), and design of the system 
are presented in detail.  In particular, the “smart sensor” concept is introduced which provided a 
standardized means for each sensor to present data for rapid integration and arbitration.  Information 
about the vehicle design, system localization, perception sensors, and the dynamic planning 
algorithms that were used is then presented in detail.  Subsequently, testing results and performance 
results are presented. 
 
Keywords: DARPA Grand Challenge, autonomous navigation, path planning, sensor fusion, world 

modeling, localization, JAUS 
 



1. INTRODUCTION 
 
The DARPA Grand Challenge is widely recognized as the largest and most cutting-edge robotics 
event in the world, offering groups of highly motivated scientists and engineers across the US an 
opportunity to innovate in developing state-of-the-art autonomous vehicle technologies with 
significant military and commercial applications.  The US Congress has tasked the military with 
making nearly one-third of all operational ground vehicles unmanned by 2015 and The DARPA 
Grand Challenge is one in a number of efforts to accelerate this effort.  The intent of the event is to 
spur participation in robotics by groups of engineers and scientists outside the normal military 
procurement channels including leaders in collegiate research, military development, and industry 
research. 
 
Team CIMAR is a collaborative effort of the University of Florida Center for Intelligent Machines 
and Robotics (CIMAR), The Eigenpoint Company of High Springs, Florida, and Autonomous 
Solutions of Young Ward, Utah.  The goal of Team CIMAR is to develop cutting edge autonomous 
vehicle systems and solutions with wide ranging market applications such as intelligent 
transportation systems and autonomous systems for force protection.  Team CIMAR focused on 
proving their solutions on an international level by participating in both the 2004 and the 2005 
DARPA Grand Challenges. 
 
In 2003, Team CIMAR was one of 25 teams selected from over 100 applicants nationwide to 
participate in the inaugural event.  Team CIMAR was also one of the 15 teams that successfully 
qualified for and participated in the inaugural event in March 2004; and finished 8th.  Team CIMAR 
was accepted into the inaugural DARPA Grand Challenge in late December 2003 and fielded a top 
10 vehicle less than three months later.  The team learned a tremendous amount from the initial 
event and used that experience to develop a highly advanced new system to qualify for the second 
Grand Challenge in 2005 (see Figure 1). 
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Figure 1: The NaviGATOR 
 



2. SYSTEM ARCHITECTURE AND DESIGN 
 
The system architecture that was implemented was based on the Joint Architecture for Unmanned 
Systems (JAUS) Reference Architecture, Version 3.0 (JAUS, 2005).  JAUS defines a set of reusable 
components and their interfaces.  The system architecture was formulated using existing JAUS-
specified components wherever possible along with a JAUS-compliant inter-component messaging 
infrastructure.  Tasks for which there are no components specified in JAUS required the creation of 
so-called “Experimental” components using “User-defined” messages.  This approach is endorsed 
by the JAUS Working Group as the best way to extend and evolve the JAUS specifications.   

2.1.  High-Level Architecture 
At the highest level, the architecture consists of four fundamental elements, which are depicted in 
Figure 2: 

• Planning Element: The components that act as a repository for a priori data.  Known 
roads, trails, or obstacles, as well as acceptable vehicle workspace boundaries.  
Additionally, these components perform off-line planning based on that data.   

• Control Element: The components that perform closed-loop control in order to keep the 
vehicle on a specified path.   

• Perception Element: The components that perform the sensing tasks required to locate 
obstacles and to evaluate the smoothness of terrain.   

• Intelligence Element: The components that act to determine the ‘best’ path segment to be 
driven based on the sensed information.   

2.2.  Smart Sensor Concept 
The Smart Sensor concept unifies the formatting and distribution of perception data among the 
components that produce and/or consume it.  First, a common data structure, dubbed the 
Traversability Grid, was devised for use by all Smart Sensors, the Smart Arbiter, and the Reactive 
Driver.  Figure 3 shows the world as a human sees it in the upper level, while the lower level shows 
the Grid representation based on the fusion of sensor information.  This grid was sufficiently 
specified to enable developers to work independently and for the Smart Arbiter to use the same 
approach for processing input grids no matter how many there were at any instant in time. 
 
The basis of the Smart Sensor architecture is the idea that each sensor processes its data 
independently of the system and provides a logically redundant interface to the other components 
within the system.  This allows developers to create their technologies independently of one another 
and process their data as best fits their system.  The sensor can then be integrated into the system 
with minimal effort to create a robust perception system.  The primary benefit of this approach is its 
flexibility, in effect, decoupling the development and integration efforts of the various component 
researchers.  Its primary drawback is that it prevents the ability of one sensor component to take 
advantage of the results of another sensor when translating its raw input data into traversability 
findings. 
 



 
Figure 2: The NaviGATOR’s JAUS-compliant Architecture 

The Traversability Grid concept is based on 
the well-understood notion of an Occupancy 
Grid, which is often attributed to Alberto Elfes 
of Carnegie-Mellon University (Elfes, 1989).  
His work defines an Occupancy Grid as “a 
probabilistic tesselated representation of 
spatial information.”  Sebastian Thrun 
provides an excellent treatise on how this 
paradigm has matured over the past 20 years 
(Thrun, 2003).  The expansion of the 
Occupancy Grid into a Traversability Grid has 
emerged in recent years in an attempt to 
expand the applicability and utility of this 
fundamental concept (Seraji, 2003), (Ye, 
2004).  The primary contribution of the 
Traversability Grid implementation devised 
for the NaviGATOR is its focus on 

Figure 3: Traversability Grid Portrayal 
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representing degrees of traversability including terrain conditions and obstacles (from absolutely 
blocked to unobstructed level pavement) while preserving real-time performance of 20 Hz. 
 
The Traversability Grid design is 121 rows (0 – 120) by 121 columns (0 – 120), with each grid cell 
representing a half-meter by half-meter area.  The center cell, at location (60, 60), represents the 
vehicle’s reported position.  The sensor results are oriented in the global frame of reference so that 
true north is always aligned vertically in the grid.  In this fashion, a 60m by 60m grid is produced 
that is able to accept data at least 30m ahead of the vehicle and store data at least 30m behind it.  To 
support proper treatment of the vehicle’s position and orientation, every Smart Sensor component is 
responsible for establishing a near-real-time latitude/longitude and heading (yaw) feed from the 
GPOS component. 
 
The scoring of each cell is based on mapping the sensor’s assessment of the traversability of that 
cell into a range of 2 to 12, where 2 means that the cell is absolutely impassable, 12 means the cell 
represents an absolutely desirable, easily traversed surface, and 7 means that the sensor has no 
evidence that the traversability of that cell is particularly good or bad.  Certain other values are 
reserved for use as follows: 0 → “out-of-bounds,” 1 → “value unchanged,” 13 → “failed/error,” 14 
→ “unknown,” and 15 → “vehicle location.”  These discrete values have been color-coded to help 
humans visualize the contents of a given Traversability Grid, from red (2) to gray (7) to green (12). 
 
All of these characteristics are the same for every Smart Sensor, making seamless integration 
possible, with no predetermined number of sensors.  The grids are sent to the Smart Arbiter, which 
is responsible for fusing the data.  The arbiter then sends a grid with all the same characteristics to 
the Reactive Driver, which uses it to dynamically compute the desired vehicle speed and steering. 
 
The messaging concept for marshalling grid cell data from sensors to the arbiter and from the 
arbiter to the reactive driver is to send an entire traversability grid as often as the downstream 
component has requested it (typically at 20 Hz).  In order to properly align a given sensor’s output 
with that of the other sensors, the message must also provide the latitude and longitude of the center 
cell (i.e., vehicle position at the instant the message and its cell values were determined).  An 
alternative approach for data marshalling was considered in which only those cells that had changed 
since the last message were packaged into the message.  Thus, for each scan or iteration, the 
sending component would determine which cells in the grid have new values and pack the row, 
column, and value of that cell into the current message.  This technique greatly reduces the network 
traffic and message-handling load for nominal cases (i.e., cases in which most cells remain the same 
from one iteration to the next).  However, after much experimentation in both the lab and the field, 
this technique was not used due to concerns that a failure to receive and apply a changed cells 
message would corrupt the grid and potentially lead to inappropriate decisions, while the 
performance achieved when sending the entire grid in each message never became an issue (our 
concern about the ability of the Smart Sensor computers, or the onboard network, to process 
hundreds of full-grid messages per second did not manifest itself in the field). 
 
In order to aid in the understanding, tuning, and validation of the Traversability Grids being 
produced, a Smart Sensor Visualizer (SSV) component was developed.  Used primarily for testing, 
the SSV can be pointed at any of the Smart Sensors, the Smart Arbiter, or the Reactive Driver and it 
will display the color-coded Traversability Grid, along with the associated vehicle position, 



heading, and speed.  The refresh rate of the images is adjustable from real-time (e.g., 20 Hz) down 
to periodic snapshots (e.g., 1 second interval). 

2.3. Concept of Operation 
The most daunting task of all was integrating these components such that an overall mission could 
be accomplished.  Figure 4 portrays schematically how the key components work together to 
control the vehicle.  Figure 4 also shows how the Traversability Grid concept enables the various 
Smart Sensors to deliver grids to the Smart Arbiter, which fuses them and delivers a single grid to 
the Reactive Driver.  Prior to beginning a given mission, the a priori Planner builds the initial path, 
which it stores in a Path File as a series of GPS waypoints.  Once the mission is begun, the Reactive 
Driver sequentially guides the vehicle to each waypoint in the Path File via the Primitive Driver.  
Meanwhile, the various Smart Sensors begin their search for obstacles and/or smooth surfaces and 
feed their findings to the Smart Arbiter.  The Smart Arbiter performs its data fusion task and sends 
the results to the Reactive Driver.  The Reactive Driver looks for interferences or opportunities 
based on the feed from the Smart Arbiter and alters its command to the Primitive Driver 
accordingly.  Finally, the goal is to perform this sequence iteratively on a sub-second cycle time (10 
to 60 Hz), depending on the component, with 20 Hz as the default operational rate. 
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Figure 4: Operational Schematic (including Traversability Grid Propagation) 
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3. VEHICLE DESIGN 
 
The NaviGATOR’s base platform is an all terrain vehicle custom built to Team CIMAR's 
specifications.  The frame is made of mild steel roll bar with an open design.  It has 9" Currie axles, 
Bilstein Shocks, hydraulic steering, and front and rear disk brakes with an emergency brake to the 
rear.  It has a 150 HP Transverse Honda engine/transaxle mounted longitudinally, with locked 
transaxle that drives front and rear Detroit Locker differentials (4 wheel drive, guaranteed to get 
power to the road).  The vehicle was chosen for its versatility, mobility, openness, and ease of 
development (see Figure 5). 

      (a)               (b) 

Figure 5: Base Mobility Platform 

The power system consists of two, independent 140A, 28V alternator systems (Figure 5a).  Each 
alternator drives a 2400W continuous, 4800W peak inverter and is backed up by 4 deep cell 
batteries.  Each alternator feeds one of two automatic transfer switches (ATS).  The output of one 
ATS drives the computers and electronics while the other drives the actuators and a 3/4 Ton 
(approx. 1kW cooling) air conditioner.  Should either alternator/battery system fail the entire load 
automatically switches to the other alternator/battery system.  Total system power requirement is 
approximately 2200W, so the power system is totally redundant. 

The system sensors are mounted on 
a rack that is specifically designed 
for their configuration and 
placement on the front of the 
vehicle (see Figure 6).  These 
sensors include a camera that finds 
the smoothest path in a scene.  
Equipped with an automatic iris 
and housed in a waterproof and 
dust proof protective enclosure, the 
camera looks through a face that is 
made of lexan and covered with 
polarizing, scratch-resistant film.  
Also mounted on the sensor cage 
are two SICK LADARS that scan 
the ground ahead of the vehicle for 

Figure 6: View of Sensor Cage 



terrain slope estimation, one tuned for negative obstacle detection and the other for smooth terrain 
detection.  Also, an additional SICK LADAR aimed parallel to the ground plane is mounted on the 
front of the vehicle at bumper level for planar obstacle detection.  Additional sensors were mounted 
on the vehicle for experimental purposes, but were not activated for the DGC event.  Each sensor 
system is described in detail later in this paper.  

The computing system requirements consists of high level computation needs, system command 
implementation, and system sensing with health and fault monitoring.  The high level computational 
needs are met in the deployed system via the utilization of eight single-processor computing nodes 
targeted at individual computational needs.  The decision to compartmentalize individual processes 
is driven by the developmental nature of the system.  A communications protocol is implemented to 
allow inter-process communication. 
 
The individual computing node hardware 
architecture was selected based on the 
subjective evaluation of commercial off-
the-shelf hardware.  Evaluation criteria 
were centered on performance and power 
consumption.  The deployed system 
maintains a homogenous hardware 
solution with respect to motherboard, 
ram, enclosure, and system storage.  The 
AMD K8 64 bit microprocessor family 
was selected based on power 
consumption measurement and 
performance to allow tailoring based on 
performance requirements with the 
objective of power requirement reduction.  
Currently three processor speeds are 
deployed: 2.0 ghz, 2.2 ghz, and 2.4 ghz.  The processors are hosted in off the shelf motherboards 
and utilize solid-state flash cards for booting and long-term storage.  Each processing node is 
equipped with 512 to 1028 MB of RAM.  JAUS communication is effected through the built in 
Ethernet controller located on the motherboard.  Several nodes host PCI cards for data i/o.  Each 
node is housed in a standard 1-U enclosure.  The operating system deployed is based on the 2.6 
Linux kernel.  System maintenance and reliability are expected to be adequate due to the 
homogenous and modular nature of the compute nodes.  Back-up computational nodes are on hand 
for additional requirements and replacement.  All computing systems and electronics are housed in 
a NEMA 4 enclosure mounted in the rear of the vehicle (see Figure 7). 

Figure 7: Computer and Electronics Housing 



4. ROUTE PRE-PLANNING 
 
The DARPA Grand Challenge posed an interesting planning 
problem given that the route could be up to 175 miles in length 
and run anywhere between Barstow, California and Las Vegas, 
Nevada.  On the day of the event, DARPA supplied a Route 
Data Definition File (RDDF) with waypoint coordinates, 
corridor segment width and velocity data.  In order to process 
the a priori environment data and generate a route through 
DARPA’s waypoint file, Team CIMAR uses Mobius, an easy to 
use graphical user interface developed by Autonomous Solutions 
Inc. for controlling and monitoring unmanned vehicles.  Mobius 
was used to plan the initial path for the NaviGATOR in both the 
National Qualification Event and the final Grand Challenge 
Event. 
 
The route pre-planning is done in three steps: generate corridor 
data, import and optimize the DARPA path, and modify path 
speeds.  A World Model component generates the corridor data 
by parsing DARPA’s RDDF and clipping all other environment 
information with the corridor such that only elevation data inside 
the corridor is used in the planning process (see Figure 8).  The 
RDDF corridor (now transformed into an ESRI shapefile) is then 
imported into Mobius and displayed to the operator for 
verification. 

Figure 8: RDDF Corridor 
(parsed with elevation data) 

 
In the next step, Mobius imports the original RDDF file for use in path generation.  Maximum 
velocities are assigned to each path segment based on the DARPA assigned velocities at each 
waypoint.  From here, the path is optimized using the NaviGATOR’s kinematics constraints and a 
desired maximum deviation from the initial path.  The resultant path is a smooth, drivable path from 
the start node to the finish node that stays inside the RDDF corridor generated specifically for the 
NaviGATOR (see Figure 9).  Mobius is then used to make minor path modifications where 
necessary to create a more desirable path. 
 
The final step of the pre-planning process is to modify path velocities based on a priori 
environment data and velocity constraints of the NaviGATOR itself.  Sections of the path are 
selected and reassigned velocities.  Mobius assigns the minimum of the newly desired velocity and 
the RDDF-assigned velocity to the sections in order to ensure that the RDDF-assigned velocities are 
never exceeded.  During the DARPA events, the maximum controlled velocity of the NaviGATOR 
was 25 miles per hour so, in the first pass, the entire path was set to a conservative 18 mph except in 
path segments where the RDDF speed limit was lower.  From there, the path is inspected from start 
to finish and velocities are increased or decreased based on changes in curvature of the path, open 
environment (dry lake beds), elevation changes, and known hazards in the path (e.g., over/under 
passes).  After all velocity changes are made, the time required to complete the entire path can be 
calculated.  For the race, it was estimated that it would take the NaviGATOR approximately 8 hours 



and 45 minutes to complete the course.  Finally, the path is saved as a comma separated Path File 
and transferred to the NaviGATOR for autonomous navigation. 
 

 
 

Figure 9: Mobius screen shot with path optimized for the NaviGATOR.  The race RDDF 
is shown in the upper left corner and the start/finish area is centered on the screen. 

 
 



5. LOCALIZATION 
 
The NaviGATOR determines its geo-location by filtering and fusing a combination of sensor data.  
The processing of all navigation data is done by a Smiths Aerospace North-finding Module (NFM), 
which is an inertial navigation system.  This module maintains Kalman Filter estimates of the 
vehicle’s global position and orientation, as well as linear and angular velocities.  It fuses internal 
accelerometer and gyroscope data, with data from an external NMEA GPS, and external odometer.  
The GPS signal provided to the NFM comes from one of the two onboard sensors.  These include a 
NavCom Technologies Starfire 2050, and a Garmin WAAS Enabled GPS 16.  An onboard 
computer simultaneously parses data from the two GPS units and routes the best-determined signal 
to the NFM.  This is done to maintain valid information to the NFM at times when only one sensor 
is tracking GPS satellites.  During valid tracking, the precision of the NavCom data is better than 
the Garmin, and thus the system is biased to always use the NavCom when possible. 
 
In the event that both units lose track of satellites, as seen during GPS outages, which occurs when 
the vehicle is in a tunnel, the NFM will maintain localization estimates based on inertial and 
odometry data.  This allows the vehicle to continue on course for a period of time; however, the 
solution will gradually drift and the accuracy of the position system will steadily decrease as long as 
the GPS outage continues.  After a distance of a few hundred meters, the error in the system will 
build up to the point where the vehicle can no longer continue on course with confidence.  At this 
point, the vehicle will stop and wait for a GPS reacquisition.  Once the GPS units begin tracking 
satellites and provide a valid solution, the system corrects for any off course drift and continues 
autonomous operation. 
 
The Smith’s NFM is programmed to robustly detect and respond to a wide range of sensor errors or 
faults.  The known faults of both GPS systems, which generate invalid data, are automatically 
rejected by the module, and do not impact the performance of the system, as long as the faults do 
not persist for an extended period of time.  If they do persist, then the NFM will indicate to a control 
computer what the problem is, and the system can correct it accordingly.  The same is true for any 
odometer encoder error, or inertial sensor errors.  The NFM will automatically respond to the faults 
and relay the relevant information to control computers, so the system can decide the best course of 
action to correct the problem. 
 



6. PERCEPTION 
 
This section of the paper discusses how the NaviGATOR collects, processes and combines sensor 
data.  Each of the sensor components is presented, organized by type: LADAR, camera, or “pseudo” 
(a component that produces an output as if it were a sensor, but based on data from a file or 
database).  Finally, the Smart Arbiter sensor fusion component is discussed. 

6.1. LADAR-based Smart Sensors 
There are three Smart Sensors that rely on LADAR range data to produce their results: the Terrain 
Smart Sensor (TSS), the Negative Obstacle Smart Sensor (NOSS) and the Planar LADAR Smart 
Sensor (PLSS).  All three components use the LMS291-S05 from Sick Inc. for range measurement.  
The TSS will be described in detail and then the remaining two will be discussed only in terms of 
how they are different than the TSS. 
 
A laser range finder operates on the principle of time of flight.  The sensor emits an eye-safe 
infrared laser beam in a single-line sweep of either 180° or 100°, detects the returns at each point of 
resolution, and then computes single line range image.  Although three range resolutions are 
possible (1°, 0.5° or 0.25°) the resolution of 0.25° can only be achieved with a 100° range scan.  
The accuracy of the laser measurement is +/- 50 mm for a range of 1 to 20 m while its maximum 
range is ~80 m.  A high-speed serial interface card is used to achieve the needed high-speed baud 
rate of 500 kB. 

6.1.1. Terrain Smart Sensor 
The sensor is mounted facing forward at an angle of 6° towards the ground.  For the implementation 
of the TSS, the 100° range with a 0.25° resolution is used.  With this configuration and for nominal 
conditions (flat ground surface, vehicle level), the laser scans at a distance of ~20 m ahead of the 
vehicle and ~32 m wide.  The TSS converts the range data reported by the laser in polar coordinates 
into Cartesian coordinates local to the sensor, with the Z-axis vertically downward and the X-axis in 
the direction of vehicle travel.  The height for each data point (Z-component) is computed based on 
the known geometry of the system and the range distance being reported by the sensor.  The data is 
then transformed into the global coordinate system required by the Traversability Grid, where the 
origin is the centerline of the vehicle at ground level below the rear axle (i.e., the projection of the 
GPS antenna onto the ground), based on the instantaneous roll, pitch, and yaw of the vehicle.   
 
Each cell in the Traversability Grid is evaluated individually and classified for its traversability 
value.  The criteria used for classification are: 
 

1. The mean elevation (height) of the data point(s) within the cell. 
2. The slope of the best fitting plane through the data points in each cell. 
3. The variance of the elevation of the data points within the cell                                                        
 

The first criterion is a measure of the mean height of a given cell with respect to the vehicle plane.  
Keep in mind that positive obstacles are reported as negative elevations since the Z-axis points 
down.  The mean height is given as: 
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=µ          (1) 

where µ is the mean height, ΣZi is the sum of the elevation of the data points within the cell and n is 
the number of data points.  
 
The second criterion is a measure of the slope of the data points.  The equation for the best fitting 
plane, derived using the least squares solution technique, is given as: 
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where: 
optimumS  is the vector perpendicular to the best fitting plane 

G is an n × 3 matrix given by: 
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b  is a vector of length ‘n’ given by: 
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Assuming  equal to 1, the above equation is used to find  for the data points within each 
cell.  Once the vector perpendicular to the best fitting plane is known, the slope of this plane in the 
‘x’ and ‘y’ directions can be computed.  Chapter 5 of (Solanki, 2003) provides a thorough proof of 
this technique for finding the perpendicular to a plane. 

iD0 optimumS

 
The variance of the data points within each cell is computed as, 
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A traversability value between 2 and 12 is assigned to each cell, depending on the severity values of 
the mean height, slope, and variance information.  A cell must contain a minimum of three data 
points or else that cell is flagged as unknown.  This also helps in eliminating noise.  Each of the 
parameters is individually mapped to a corresponding traversability value for a given cell.  This 
mapping is entirely empirical and non-linear.  A weighted average of these three resulting 
traversability values is used to assign the final traversability value. 

6.1.2. Negative Obstacle Smart Sensor 
The NOSS was specifically implemented to detect negative obstacles (although it can also provide 
information on positive obstacles and surface smoothness like the TSS).  The sensor is configured 
like the TSS, but at an angle of 12° towards the ground.  With this configuration and for nominal 



conditions, the laser scans the ground at a distance 
of ~10 m ahead of the vehicle.  To detect a 
negative obstacle, the component analyzes the 
cases where it receives a range value greater than 
would be expected for level ground.  In such cases 
the cell where one would expect to receive a hit is 
found by assuming a perfectly horizontal 
imaginary plane.  As shown in Figure 10, this cell 
is found by solving for the intersection of the 
imaginary horizontal plane and the line formed by 
the laser beam.  A traversability value is assigned 
to that cell based on the value of the range 
distance and other configurable parameters.  Thus 
a negative obstacle is reported for any cell whose 
associated range data is greater than that expected for an assumed horizontal surface.  The 
remaining cells for which range value data is received are evaluated on a basis similar to the TSS.   

Imaginary 
horizontal plane

Laser beam

Negative obstacle  
(e.g., large pothole on the road or 

a cliff on the side of the road) 

Figure 10: NOSS implementation (side view) 

6.1.3. Planar LADAR Smart Sensor 
The sensor is mounted 0.6 m above the ground, scanning in a plane horizontal to the ground.  
Accordingly, the PLSS only identifies positive obstacles and renders no opinion regarding the 
smoothness or traversability of areas where no positive obstacle is reported.  For the PLSS, the 180° 
range with a 0.5° resolution is used.  The range data from the laser is converted into the Global 
coordinate system and the cell from which each hit is received is identified.  Accordingly the 
“number of hits” in that cell is incremented by one and then, for all the cells between the hit cell and 
the sensor, the “number of missed hits” is incremented by one.  Bresenham’s line algorithm is used 
to efficiently determine the indices of the intervening cells.   
 
A traversability value between 2 and 7 is assigned to each cell based on the total number of hits and 
misses accumulated for that cell.  The mapping algorithm first computes a score, which is the 
difference between the total number of hits and a discounted number of misses in a cell (a discount 
weight of 1/6 was used for the event).  This score is then mapped to a traversability value using an 
exponential scale of 2.  For example, a score of 2 or below is mapped to a traversability value of 
“7,” a score of 4 and below is mapped to a “6” and so on, with a score greater than 32 mapped to a 
“2.”  The discounting of missed hits provides conservatism in identifying obstacles, but does allow 
gradual recovery from false positives (e.g., ground effects) and moving obstacles. 

6.1.4. Field Testing 
The parameters of the algorithm that affect the output of the component are placed in a 
configuration file so as to enable rapid testing and tuning of those parameters.  Examples of these 
tunable parameters for the TSS and NOSS components are the threshold values for the slope, 
variance, and mean height for mapping to a particular traversability value.  For the PLSS, these 
parameters include the relative importance of the number of hits versus misses in a given cell and a 
weighting factor to control how much any one scan affects the final output.  
 
By making these parameters easy to adjust, it was possible to empirically tune and validate these 
components for a wide variety of surroundings such as a steep slopes, cliffs, rugged roads, small 



bushes, and large obstacles, like cars.  This approach also helped to configure each component to 
work in the most optimum way across all the different surroundings.  Finally, it helped in deciding 
on the amount of data/time the component required to build confidence about an obstacle or when 
an obstacle that was detected earlier has now disappeared from view (e.g., a moving obstacle).    

6.2. Camera-based Smart Sensor 
The Pathfinder Smart Sensor (PFSS) consists of a single color camera mounted in the sensor cage 
and aimed at the terrain in front of the vehicle.  Its purpose is to assess the area in the camera’s 
scene for terrain that is similar to that on which the vehicle is currently traveling, and then translate 
that scene information into traversability information.  The PFSS component uses a high-speed 
frame-grabber to store camera images at 30 Hertz.   
 
Note that the primary feature used for analytical processing is the RGB (Red, Green, and Blue) 
color space.  This is the standard representation in the world of computers and digital cameras and 
is therefore often a natural choice for color representation.  Also RGB is the standard output from a 
CCD-camera.  Since roads typically have a different color than non-drivable terrain, color is a 
highly relevant feature for segmentation.  The following paragraphs describe the scene assessment 
procedure applied to each image for rendering the Traversability Grid that is sent to the Smart 
Arbiter. 

6.2.1. Preprocess Image 
To reduce the computational expense of processing large images, the dimensions of the scene are 
reduced from the original digital input of 720 × 480 pixels to a 320 × 240 reduced image.  Then, the 
image is further preprocessed to eliminate the portion of the scene that most likely corresponds to 
the sky.  The segmentation of the image is based simply on physical location within the scene 
(tuned based on field testing), adjusted by the instantaneous vehicle pitch.  This very simplistic 
approach is viable because the consequences of inadvertently eliminating ground are minimal due to 
the fact that ground areas near the horizon will likely be beyond the 30 m planning distance of the 
system.  The motivation for this step in the procedure is that the sky portion of the image hinders 
the classification procedure in two ways.  First, considering the sky portion slows down the image 
processing speed by spending resources evaluating pixels that could never be drivable by a ground 
vehicle.  Second, there could be situations where parts of the sky image could be misclassified as 
road. 

6.2.2. Produce Training and Background Data Sets 
Next, a 100 × 80 sub-image is used to define the 
drivable area and two 35 × 50 sub-images are used 
to define the background.  The drivable sub-image 
is placed in the bottom, center of the image while 
the background sub-images are placed at the 
middle-right and middle-left of the image, which is 
normally where the background area will be found, 
based on experience (Lee, 2004) (see Figure 11).  
When the vehicle turns, the background area that is 
in the direction of the turn will be reclassified as a 
drivable area.  In this case, that background area 

Figure 11: Scene Segmentation Scheme 



information is treated as road area by the classification algorithm. 

6.2.3. Apply Classification Algorithm 
A Bayesian decision theory approach was selected for use, as this is a fundamental statistical 
approach to the problem of pattern classification associated with applications such as this.  It makes 
the assumption that the decision problem is posed in probabilistic terms, and that all of the relevant 
probability values are known.  The basic idea underlying Bayesian decision theory is very simple.  
However this is the optimal decision theory under Gaussian distribution assumption (Morris, 1997). 
 
The decision boundary that was used is given by: 
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where 1µ and are the mean vector and covariance matrix of the drivable-area RGB pixels in the 

training data, 
1Σ

2µ and are those of the background pixels and x contains RGB values of the entire 

image.  
2Σ

 
The decision boundary formula can be simplified as 
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A block-based segmentation method is used to reduce the segmentation processing time.  4×4 pixel 
regions are clustered together and replaced by their RGB mean value, as follows: 

 

( , ) ( , )2
1 1

1 N N
L
x y i j

i j

P
N

µ
= =

= ∑∑ L        (8) 

 
where µ(x,y) is the new pixel mean value for the 4×4 block, P is the raw pixel data, (i, j) is the raw 
pixel orientation, (x, y) is the new pixel orientation, {1, 2, 3}L ∈  for RGB, and N is the block size. 
 
The clusters, or blocks, are then segmented, and the result, as shown in Figure 12 (a), has less noise 
compared with pixel based approaches, Figure 12 (b).  Also the segmentation process is 
accomplished faster than pixel-based classification.  A disadvantage, however, is that edges are 
jagged and not as distinct. 
 



 
(a) 

 

 
(b) 

 
Figure 12: Processed Images 

6.2.4. Transform to Global Coordinate System 
After processing the image, the areas classified as drivable road are 
converted by perspective transformation estimation into the global 
coordinates used for the Traversability Grid (Criminisi, 1997).  The 
perspective transformation matrix is calculated based on camera 
calibration parameters and the instantaneous vehicle heading.  
Finally, the PFSS assigns a value of 12 (highly traversability) to 
those cells that correspond to an area that has been classified as 
drivable.  All other cells are given a value of 7 (neutral).  Figure 13 
depicts the PFSS Traversability Grid data after transformation into 
global coordinates. 

 

   Figure 13: Transformed Image 

6.3. Pseudo Smart Sensors 
There are two Smart Sensors that produce Traversability Grids based on stored data: the Boundary 
Smart Sensor (BSS) and the Path Smart Sensor (PSS). 
 

The BSS translates boundary knowledge, defined as boundary 
polygons prior to mission start, into real-time Traversability Grids, 
which assures that the vehicle does not travel outside the given 
bounds.  The BSS is responsible for obtaining the boundary 
information from a local spatial database.  The BSS uses this data to 
determine the in-bounds and out-of-bounds portions of the 
traversability grid for the instantaneous location of the vehicle.  The 
BSS also has a configurable “feathering” capability that allows the 
edge of the boundary to be softened, creating a buffer area along the 
edges.  This feature provides resilience to uncertainties in the 
position data reported by the GPOS component.  Figure 14 shows a 
typical grid output from the BSS indicating the vehicle’s location 
within the grid and the drivable region around it.  By clearly 
demarking areas of the grid as out-of-bounds, the BSS allows the 
Smart Arbiter to summarily dismiss computation of out-of-bounds 
grid cells and the Reactive Driver to prune its search tree of potential 
plans.   

Figure 14: Traversability 
Grid showing boundary 

data 



The PSS translates the a priori path plan, stored as a “path file” prior 
to mission start, into real-time Traversability Grids.  The PSS uses 
this path data to superimpose the originally planned path onto the 
traversability grid based on the instantaneous location of the vehicle.  
The PSS has a configurable “feathering” capability that allows the 
width of the path to be adjusted and the edges of the path to be 
softened.  This feature also allows the engineer to select how 
strongly the originally planned path should be weighted by setting 
the grid value for the centerline.  A 12 would cause the arbiter and 
planner to lean towards following the original plan even if the 
sensors were detecting a better path, while a 10, which is what was 
used at run-time, would make the original plan more like a 
suggestion that could be more easily overridden by sensor findings.  
Figure 15 shows a typical grid output from the PSS indicating the 
vehicle’s location within the grid and the feathered a priori planned 
path flowing through the in-bounds corridor. 

6.4. Sensor Fusion 
With the Traversability Grid concept in place to normalize the outputs o
the data fusion task becomes one of arbitrating the matching cells into 
that cell for every in-bounds cell location in the grid.   

6.4.1. Grid Alignment 
First, the Smart Arbiter must receive and unpack the newest message fro
adjust its center-point to match that of the Arbiter (assuming that the veh
instant in time when the sensor’s message was built and the instant i
output message is being built).  This step must be repeated for each sens
The pseudo code for this process is: 
 
 Determine current location of current of vehicle 
 
 Adjust center-point of Smart Arbiter Grid to match current locatio
 
 For each active Smart Sensor: 
  Adjust center-point of Smart Sensor Grid to match current
 
At this point, all input grids are aligned and contain the latest findings 
support the alignment of Traversability Grids with current vehicle p
buffer” object was introduced.  This allows the system to use pointer a
(i.e., change the row and column values of its center-point) without copy

6.4.2. Data Arbitration 
Now the Smart Arbiter must simultaneously traverse the input grids, c
data from each corresponding cell into a single output value for that row
cells have been treated in this fashion, the Smart Arbiter packs up its out
it on the Reactive Driver. 
Figure 15: Traversability 
Grid showing a priori path 
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For early testing, a simple average of the input cell values was used as the output cell value.  Later 
work investigated other algorithms, including heuristic ones, to perform the data fusion task.  The 
Smart Arbiter component was designed to make it easy to experiment with varying fusion 
algorithms in support of on-going research.  The algorithm that was used for the DGC event 
entailed a two-stage heuristic approach.  Stage 1 is an “auction” for severe obstacles for the cell 
position under consideration.  Stage 2 then depends on the results of the “auction.”  If no sensor 
“wins” the auction, then all of the input cells at that position are averaged, including the arbiter’s 
previous output value for that cell.  The pseudo code for this algorithm is: 
 
 For each cell location: 
 

 IF any sensor reported a “2”,  
THEN decrement the Arbiter’s output cell by decr (min = 2) 

 
 ELSE IF any sensor reported a “3”,  

THEN decrement the Arbiter’s output cell by decr/2 (min = 3) 
 
 ELSE 
  Arbiter’s output cell = Average(input cells + Arbiter’s prior output cell) 

 
where decr is a configurable parameter ( = 2 for the Grand Challenge Event). 

 
Thus, a sensor must report a severe obstacle for several iterations in order for the arbiter to lower its 
output value, thus providing a dampening effect to help circumvent thrashing due to a sensor’s 
output values.  The averaging of input values along with the arbiter’s previous output value also 
provides a dampening effect.   
 
The Smart Arbiter, using the algorithm described here, was able to achieve its specified processing 
cycle speed of 20 Hz.  The premise used for all algorithms that were explored was to keep the 
arithmetic very simple and in-place since the data fusion task demands can reach 2 million 
operations per second just to process the algorithm (7 grids/cycle * 14,641 cells/grid * 20 
cycles/second).  Thus, complex, probabilistic-based and belief-based approaches were not explored.  
However, adding highly traversable cells to the auction (i.e., 11’s and 12’s) and post-processing the 
output grid to provide proximity smoothing and/or obstacle dilation were explored, but none of 
these alternatives provided any better performance (in the sense of speed or accuracy) than the one 
used for the event. 
 



7. REAL-TIME PLANNING AND VEHICLE CONTROL 
 
The purpose of online planning and control is to autonomously drive the NaviGATOR through its 
sensed environment along a path that will yield the greatest chance of successful traversal.  This 
functionality is compartmentalized into the Reactive Driver (RD) component of the NaviGATOR.  
The data input to this component include the sensed cumulative traversability grid, assembled by 
the Smart Arbiter component, vehicle state information, such as position and velocity, and finally 
the a priori path plan, which expresses the desired path for the vehicle to follow sans sensor input.  
Given this information, the online real-time planning and control component, seeks to generate low-
level actuator commands, which will guide the vehicle along the best available path, while avoiding 
any areas sensed as poorly traversable. 

7.1. Receding Horizon Controller 
The objective of the RD component is to generate an optimized set of the actuator commands 
(referred to as a “wrench” in JAUS), which drives the vehicle through the traversability grid and 
brings the vehicle to a desired goal state.  The NaviGATOR accomplishes this real-time planning 
and control simultaneously, with the application of an innovative heuristic-based receding horizon 
controller.  
 
Receding horizon is a form of model predictive control (MPC), an advanced control technique, used 
to solve complex and constrained optimization problems.  In this case, the problem is to optimize a 
trajectory through the localized traversability space, while adhering to the nonholonomic dynamics 
constraints of the NaviGATOR.  An in-depth explanation and analysis of the technique is provided 
in (Mayne, 2000), and the application of suboptimal MPC to nonlinear systems is given in 
(Scokaert, 1999). This method was selected because it unifies the higher level planning problem 
with the lower level steering control of the vehicle.  Separate components are not needed to plan the 
geometry of a desired path, and then regulate the vehicle onto that path. 
 
The controller attempts to optimize the cost of the trajectory by employing an A* search algorithm 
(Hart, 1968).  The goal of the search is to find a set of open-loop actuator commands that minimize 
the cost of the trajectory through the traversability space, and also bring the vehicle to within a 
given proximity of a desired goal state.  The goal state is estimated as the intersection of the a priori 
path with the boundary of the traversability grid.  As the vehicle nears the end of the path, and there 
is no longer an intersection with the grid boundary, the desired goal state is simply the endpoint of 
the last a priori path segment. 
 
Special consideration was given to formulating the units of cost (c) for the search.  An exponential 
transformation of the traversability grid value (t), multiplied by distance traveled (d) was found to 
work best.  The cost equation is given here, where the exponent base is represented by (b): 
 

tdbc =           (9) 
 
Thus the cost of traversing a grid cell scales nonlinearly with its corresponding traversability value.  
An intuitive comparison is best to describe the effect of this transformation and why it works well: 
with a linear transformation, the cost of a path traveling through a traversable value of two is only 
twice as high as the same path through a value of one.  (Note, these values are just given for the 



purpose of an example and are not actually encountered in the NaviGATOR system.)  Therefore, 
the search would possibly choose a path driving through up to twice as much distance in the value 
of one, rather than a much shorter path driving through a value of two.  Whereas, an exponential 
transformation ensures that there is always a fixed ratio between neighboring integer traversability 
values.  Thus this ratio can be used as a tuning parameter to allow the algorithm to achieve the 
desired tradeoff between the length and cumulative traversability cost of a selected path.  
Conveniently, the ratio used for tuning is equal to the base of the exponent given in the cost 
equation. 
 
Closed loop control with the receding horizon controller is achieved by repeating the optimization 
algorithm as new traversability data are sensed and vehicle state information is updated.  Thus 
disturbances, such as unanticipated changes in traversability or vehicle state, are rejected by 
continually reproducing a set of near optimal open loop commands at 20 Hz, or higher. 
 
The search calculates different trajectories by generating 
input commands and extrapolating them through a vehicle 
kinematics model.  The cost of the resulting trajectory is 
then calculated by integrating the transformed traversability 
value along the geometric path that is produced through the 
grid.  The search continues until a solution set of open-loop 
commands is found that produce a near optimal trajectory.  
The first command in the set is then sent to the actuators, 
and the process is repeated.  A typical result of the planning 
optimization is shown in (see Figure 16, where the dark line 
is the final instantaneous solution). 
 

Figure 16: Sample planning result 
through traversability grid 

Rather than plan through the multidimensional vector of 
inputs, i.e. steering, throttle, and brake actuators, the search 
attempts to optimize a one dimensional set of steering 
commands at a fixed travel speed; the control of the desired 
speed is handled separately by a simple PID controller.  Since it may be necessary to change the 
vehicle’s desired speed in order to optimize the planned trajectory through the search space, extra 
logic is included in the search to either speed up or slow down the vehicle according to the 
encountered data. 

7.2. Vehicle Model 
The kinematics model used for response prediction of an input command to the system is that of a 
front-wheel steered, rear-wheel drive vehicle.  The input signals to this model are the desired 
steering rate (u), and linear vehicle velocity (v).  The model states include the vehicle Cartesian 
position and orientation (x, y, θ) and the angle of the front steering wheels (φ) with respect to the 
vehicle local coordinate frame.  The kinematics equation is given here, where (b) represents the 
wheel base of the vehicle: 
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In the algorithm implementation, additional constraints were added to the model to limit the 
maximum steering rate, and also the maximum steering angle.  These values were determined 
experimentally and then incorporated into the software as configurable parameters.  Also, due to the 
complex nature these system dynamics, obtaining a solution to the differential equations is not 
feasible; therefore a series of simplifications and assumptions were made to allow for fast 
computation of future state prediction.  The underlying assumption is that, since the resolution of 
the traversability grid is relatively low (0.5 m), very accurate estimates for the vehicle’s predicted 
motion are not necessary.  The assumptions made were that for a short period of time or traveled 
distance, the curvature of the path that the vehicle followed was near constant, and this constant 
curvature could be taken as an average over the predicted interval.  Thus the predicted path 
trajectory was simply a piece-wise set of short circular arcs.  An implementation of Bresenham’s 
algorithm (Bresenham, 1977) was used to integrate the traversability grid value along the 
determined arcs. 
 
As an additional measure for vehicle stability, a steering constraint was added to limit the maximum 
steering angle as a function of speed (v) and roll angle (Φ) (due to uneven terrain).  The goal of this 
constraint was to limit the maximum lateral acceleration (ny) incurred by the vehicle due to 
centripetal acceleration and acceleration due to gravity (g).  Thus, if the vehicle were traveling on a 
gradient that caused it to roll to any one direction, the steering wheels would be limited in how 
much they could turn in the opposite direction.  Additionally, as the vehicle increased in speed, this 
constraint would restrict turns that could potentially cause the NaviGATOR to roll over.  This 
constraint is given by the following equation: 
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The value for maximum lateral acceleration was determined experimentally with the following 
procedure.  A person driving the NaviGATOR would turn the wheels completely to one direction, 
and then proceed to drive the vehicle in a tight circle slowly increasing in speed.  The speed in 
which the driver felt a lateral acceleration that was reasonably safe or borderline comfortable was 
recorded, and the acceleration value was calculated.  This was done for both left and right turns, and 
the minimum of the two values were taken for conservatism.  The value found to be a reasonable 
maximum was, 4 mps2, and was hard coded as a constraint to the vehicle model. 

7.3. Desired Speed Logic 
The determination of the commanded and planned vehicle speed is derived from many factors.  The 
RD receives several sources of requested speed, calculates its own maximum speed, and then 
chooses the minimum of these to compute the throttle and brake commands to the vehicle.  Each of 
the input speed commands was calculated or originated from a unique factor of the vehicles desired 
behavior.  At the highest level, vehicle speed was limited to a maximum value that was determined 



experimentally based on the physical constraints of the NaviGATOR platform.  The next level of 
speed limiting came from the a priori path data, which itself was limited to the speeds provided by 
the RDDF corridor.  Additionally, the speed provided by the path file can be assessed to see if a 
slower desired speed is approaching ahead of the vehicle.  Therefore, if it is about to become 
necessary to slow down the vehicle, the RD can allow for natural deceleration time.  Also, desired 
speed as a function of pitch was added to slow down the vehicle on steep ascents or descents.  This 
ensures that the NaviGATOR does not drive too fast while encountering hilly terrain.  
 
Another important speed consideration resides with the planning search.  Embedded in the search 
itself is the ability to slow the vehicle down in the cases where the desired trajectory comes within 
proximity to poorly traversable grid cells.  The planner uses a lookup-table that enumerates all of 
the maximum speeds that the vehicle is allowed to drive while traveling through areas of low 
traversability.  Thus, if the vehicle attempts to avoid an obstacle or travel down a narrow road with 
hazardous terrain to either side, it is commanded to slow down, thus providing a lower risk while 
allowing for a more comprehensive search to find the best course of action.  Also, if the search was 
unable to find a reasonable solution (i.e., only a solution that goes through very poor areas was 
found), then the desired speed is lowered.  In its next iteration, the RD attempts to find a better 
solution at that slower speed.  This approach is reasonable because the vehicle has greater 
maneuverability at low speed, and therefore the planner has a better chance of finding a less costly 
route to its goal. 
 
Additional speed control is provided by a Situation Assessment component consisting of a Long 
Range Obstacle Specialist and a Terrain Ruggedness Specialist.  The Long Range Obstacle 
Specialist uses a data feed from the PLSS LADAR to determine whether the space directly in front 
of the vehicle is free of obstacles beyond the 30 m planning horizon (i.e., 30 m out to the 80 m 
range limit of the LADAR).  The Terrain Ruggedness Specialist uses the instantaneous pitch rate 
and roll rate of the vehicle (provided by the Velocity State Sensor) to classify the current terrain as 
“Smooth,” “Rugged,” or “Very Rugged.”  Based on the Long Range Obstacle State and Terrain 
Ruggedness State, with appropriate hysteresis control and dampening, the permitted speed of the 
vehicle is selected and sent to the RD.  For example, if the terrain is Smooth and no Long Range 
Obstacles are detected, then the RD is permitted to drive the vehicle up to its highest allowable 
speed and thus faster than an empirically derived Obstacle Avoidance speed of 7.2 mps (16 mph). 

7.4. Controller Fault Detection 
There are four faults that the RD is capable of detecting during normal operation of the vehicle.  
They are the cases where the NaviGATOR has: become blocked, become stuck, collided with an 
obstacle, or gone out of the bounds of the RDDF.  In each of these scenarios it is possible for the 
system to take corrective action.  The most commonly found of these errors is the blocked 
condition.  In this case, there is no viable path planning solution, even when the search is attempting 
to plan a trajectory at the vehicle’s most maneuverable speeds.  It was determined through analysis 
of the collected data that this case was most often occurring due to sensor misclassifications.  The 
corrective action in these scenarios is to simply wait a short period of time for the sensor data to 
correct itself, allowing the planner to find a solution.  Sometimes, the data will not correct without 
the vehicle changing its position, therefore an active correction is taken to automatically “nudge” 
the vehicle forward after a brief wait, and continue with the planned path once the blockage is clear. 
 



8. TESTING AND PERFORMANCE 
 
This section of the paper summarizes the testing and performance that occurred at each of several 
key venues.  This section is supplemented by a video depicting the NaviGATOR operating in each 
of these venues (see multimedia). 

8.1.  The CIMAR Lab 
Testing began with the JAUS messaging system on the ten computers that would drive the 
NaviGATOR.  The JAUS messaging would need to be capable of sending up to 500 messages per 
second per node for over 14 hours.  On race day, over 20 million JAUS messages were actually sent 
and received.  Next, initial testing of the individual JAUS components, discussed in this paper, took 
place in the spring of 2005 primarily in the CIMAR lab at the University of Florida.  The goal was 
to get each component working by itself, “on the bench” in a controlled laboratory environment.  To 
support bench testing, a simple vehicle simulator component was devised that sends out position- 
and velocity-related JAUS messages as if the vehicle were moving through an RDDF corridor.  
Once each individual component had been successfully tested and declared operational, then 
various combinations of components were integrated and tested together as the system began to take 
shape.  The base vehicle platform had been assembled during the same period of time as the various 
JAUS components were being bench tested.  With both the vehicle assembled and the JAUS 
components operational, the various JAUS components were then mounted in the NaviGATOR.   

8.2.  The Citra Test Site 
Next, it was time to take the system to the field.  On 20 April 2005, a test site was designed and 
constructed at the University of Florida’s Plant Science Unit located in Citra, Florida.  The course 
was laid out in an open field and consisted mainly of a figure eight, an oval, and several left and 
right sharp turns (see Figure 17).  Various segments were added to this course to replicate terrain 
that was expected in the desert.  While this course had a few tough obstacles it was basically the 
“safest” place to test.  This was Team CIMAR’s main test site and was used for extensive 
development of the system as well as the location where the DARPA site visit took place on 6 May 
2005.  On 20 May 2005 the NaviGATOR was put into a ½ mile loop and it ran for 12 miles before 
stopping due to a minor problem.  This was the furthest it would run prior to heading west in 
September as it spent the next three months undergoing major upgrades to both hardware and 
software. 

e
Figure 17: The Citra Test Sit



Part of the Citra testing effort was devoted to initial tuning of the sensors.  Figures 18 and 19 depict 
scenes of the terrain at Citra and the accompanying Smart Sensor output, as captured during the 
sensor tuning process.  Figure 18a shows evenly spaced orchard poles while Figure 18b shows a 
snapshot of the PLSS Traversability Grid while traveling on the graded road in which the poles 
have been clearly detected and scored as impassable obstacles.  This area was specifically chosen to 
assure that the output of the PLSS accurately maps obstacles onto the grid.  Note that the PLSS 
algorithm has been tuned to accurately locate the poles, even though most of them are occluded for 
periods of time as the vehicle moves past them.  Figure 19a shows a roadway with rough terrain 
appearing to the left of the vehicle when traveling in the indicated direction.  Figure 19b shows a 
snapshot of the TSS Traversability Grid for that same section of road, having scored the rough area 
as somewhat undesirable, but not absolutely blocked (i.e., 4’s, 5’s and 6’s). 
 

 
          (a)         (b) 
Figure 18: PLSS Testing Images.  
 

 
          (a)         (b) 
Figure 19: TSS Testing Images.  



By 20 August 2005 the major hardware and software upgrades were complete and the system was 
ready for one last round of testing at the Citra site prior to heading west.  On 25 August 2005, 
however, while performing a high-speed radar test, the vehicle suffered a serious failure.  One of the 
rear shocks snapped and the engine and frame dropped onto the rear drive shaft and odometer gear.  
The sudden stop also caused the front sensor cage struts to snap and the sensor cage collapsed 
forward.  The causes of the failures were determined and the system was re-designed and re-built in 
approximately one week.  With the damage repaired, the NaviGATOR returned to Citra for several 
days to verify the system was operational and ready to graduate to the desert for a more serious 
round of testing. 

8.3.  The Stoddard Valley OHV Area 
On 11 September 2005, the NaviGATOR headed west to the Stoddard Valley Off Highway Vehicle 
(OHV) Area near Barstow, California (see Figure 20).  The team first attempted some short tests 
runs to ensure system operation.  This also marked the first times the team had run the NaviGATOR 
with a chase vehicle setup (see Figure 21a).  These system tests were done in the OHV area of 
Stoddard Valley (marked 1 in Figure 20).  This test route is approximately 4 miles long and 
included the first serious autonomous uphill and downhill climbs, allowing the team to evaluate the 
performance of the system during both accent and decent maneuvers.  Speeds during these tests 
stayed in the 10 mph range.  Overall the system showed an almost surprising ability to handle the 
terrain, prompting the team to accelerate their efforts in finding more challenging test paths.  
Following these successful tests the team moved the vehicle on to Slash X.  
 

Slash X was the site of the start of the DARPA 
Grand Challenge 2004 (DGC04) event and 
during their time there Team CIMAR shared the 
area with several other DARPA Grand 
Challenge 2005 teams.  First, the team ran the 
start and first mile of the DGC04 route (site 2 in 
Figure 20).  This allowed the team to test and 
tune the sensors specifically against the barbed 
wire fence that was the downfall of the 2004 
NaviGATOR.  This path also provided a good 
place to test higher speed navigation. Between 
path 2 and an open area behind Slash X, the 
team was able to test and tune the NaviGATOR 
up to 30 mph, with an empirically determined 
obstacle avoidance speed of 16mph. 

Figure 20: Stoddard Valley OHV Test Sites 

 
Sunday 18 September 2005 turned out to be a 
historic day for Team CIMAR.  Team TerraMax 
graciously gave us one of their RDDFs through 
the desert (labeled site 3 in Figure 20).  The 
team took the file and after several false starts 
finally launched the vehicle at 4pm in the 
afternoon.  Path 3 is approximately 20 miles 
each way (with a built-in turnaround).  The 



speed testing had not yet been completed and the first test was done at a cap of 10 mph.  The team 
had never seen nor traversed this path prior to this first test.  Not knowing exactly where they were 
going, the NaviGATOR led the way (see Figure 21b).  Surprising even the team members, the 
NaviGATOR successfully navigated the entire 20 mile distance on the first try, stopping only to 
give its human handlers time to drink and rest.  
 

 
 

   (a)       (b) 
Figure 21: Testing in the Stoddard Valley OHV Area 

 
Over the following week, the team tested the NaviGATOR several more times on this course, 
reaching speeds of 25 mph and completing the entire 40-mile course several times.  The path 
included long straight roads, a mountain climb and areas covered by power lines; all terrain the 
team expected to encounter during the DARPA Grand Challenge event. 
 
The last significant area of testing in Stoddard Valley (marked 4 in Figure 20) was another portion 
of the DGC04 event.  Known as Daggett Ridge, this was the area that the farthest teams had reached 
during the previous event and consisted of very dangerous mountain switchbacks and drop-offs of 
hundreds of feet.  The sensor team made several trips with the vehicle to tune and test the sensor 
suite on the path during manual drive, especially focusing on detecting negative obstacles (in the 
form of cliffs and washouts). 
 
During two weeks of dawn-to-dusk testing in the Stoddard OHV area, the NaviGATOR went from 
a personal best of 12 miles in a 1/2-mile circuit to 40-mile runs across miles of desert terrain.  The 
team was able to scale the system quickly, going from 10 mph runs to 25 mph with reliable obstacle 
avoidance at speeds up to 16 mph, along with tuning and validating the software that dynamically 
determines which speed should be used.  The two weeks of testing in the desert was perhaps the 
best time spent testing during the entire DARPA Grand Challenge project, both in progress for the 
vehicle and the team members.  While more testing time would have been very useful, on 27 
September 2005 the team left for the California Speedway and the National Qualification Event. 

8.4.  The National Qualification Event 
Immediately following the opening ceremony, the NaviGATOR was the fourth team in line for the 
first qualification run.  The qualification course is shown in Figure 22.  It consisted of a 2.3 mile 



long path with three parked cars, a rough terrain section, a simulated mountain pass, a tunnel, and 
finally a wooden “tank trap” obstacle. 
 

 
Figure 22: Qualification course at the California Speedway. 

 
The NaviGATOR completed the entire course on the first attempt.  Figure 23 depicts the 
NaviGATOR on the NQE course.  However, three lane-marking cones had been hit and the tank 
trap obstacle at the end of the course had been slightly brushed.  Two changes were made to the 
NaviGATOR for the second run.  The desired speed on the high-speed section of the course was 
increased from 16 mph to 20 mph and the dilated 
size of the perceived obstacles was increased in an 
attempt to completely miss the tank trap obstacle.  
During the second run, the NaviGATOR began 
oscillating and became unstable on the high-speed 
section and the run was aborted.  The problem 
was that the high-speed section of the 
qualification course was on pavement whereas all 
high-speed testing had been conducted off-road.  
The disturbances caused by the constant four-
wheel drive on pavement were responsible for the 
oscillation. Figure 23: NaviGATOR at NQE 
 
For the third run on the qualification course, all parameters were reset to those used during the first 
run.  All went well until the vehicle scraped the concrete wall in the mountain pass section of the 
course, snapping the front steering linkage.  The vehicle was quickly repaired.  For future runs, the 
path centerline as reported by the Path Smart Sensor (PSS) was shifted twelve inches away from the 
wall in the mountain pass section.  After this, the qualification course was successfully completed 
two more times.  In summary, the NaviGATOR completed the entire qualification course three out 
of five times and the team was selected by DARPA to compete in the desert race. 
 



8.5.  The Race 
The team received the RDDF 
containing the course waypoints in the 
early morning of 8 October 2005.  Two 
hours were allocated for processing the 
data, which primarily consisted of 
setting desired speeds for each section 
of the course.  The path file was then 
uploaded to the vehicle and by 9:30 am 
the NaviGATOR was off.  After leaving 
the start gate, the NaviGATOR headed 
off into the desert and then circled 
around past the crowd at about the 
eight-mile mark.  The NaviGATOR 
headed past the spectators at 
approximately 24 mph, performing very 
well at this point in the race (see Figure 
24).  After following the dirt road a bit 
further, the NaviGATOR encountered a 
paved section of the course and started 
to oscillate.  It stopped and did a couple of turns, criss-crossed the road, and then regained its 
composure and headed back in the right direction.  As during the second qualification run, the 
desired speed was set too high for operation on pavement. 

Figure 24: NaviGATOR at Passing the Stands at the 
2005 DARPA Grand Challenge Event 

 
The NaviGATOR next flawlessly traversed a bridge over a railroad track and disappeared into the 
brown desert haze.  Shortly before 11 a.m., the team received word from the chase truck that was 
following NaviGATOR that the vehicle had inexplicably run off the road and stopped.  
NaviGATOR appeared reluctant to move forward into and out of low brush in front of it, although 
its off-road capabilities would have easily carried it through.  After several attempts to pause and 
restart the NaviGATOR, the driver called back to say the vehicle was moving, but slowly and still 
off the road.  After about a half mile of starting, stopping, and driving very slowly over brush, it 
regained the road and took off again at high speed following the road perfectly.  However, after 
about another mile, the vehicle again went off the road and this time stopped in front of a bush.  
This time, DARPA officials quickly declared the NaviGATOR dead.  The time was shortly before 
noon, and NaviGATOR had traveled past the 24-mile marker.  NaviGATOR placed 18th among the 
23 finalists.  A total of five teams actually completed the entire course, with Stanford’s Stanley 
taking the $2 million prize for the shortest time of six hours, 53 minutes and 58 seconds. 

8.6.  What stopped the NaviGATOR? 
Team members went out on the course the day following the race and found the NaviGATOR tire 
tracks at the two locations where the vehicle went off the right side of the road.  From this 
information and data that was logged on the vehicle, it appears that the calculated GPS position 
drifted by approximately twenty feet causing the vehicle to want to move to the right of the actual 
road.  From the tire tracks and from the traversability grid (see Figure 25), it was apparent that the 
vehicle wanted to move to the right, but the obstacle avoidance sensors were detecting the bushes 
and berms on the right side of the road.  From the vehicle’s perspective (see Figure 25) it appeared 



that the corridor was littered with objects and the best it could 
do was to travel along the left side of the corridor on the verge 
of going out of bounds on the left.  In reality, the vehicle was 
hugging the right side of a very navigable dirt road, however 
most of the open road was being classified as out of bounds. 
 
Both times that the vehicle went off course were due to the fact 
that the right side became free of obstacles and the vehicle 
attempted to move to the center of its incorrect corridor.  Figure 
26 shows the location where the NaviGATOR moved off the 
course for the second time whereupon DARPA officials stopped 
it.  In summary, a twenty-foot position error caused a 
corresponding shift of the boundary smart sensor that eliminated 
the actual sensed road as an option to the planner. Figure 25: Traversability Grid 

(during time of position  
system drift)

 

 
Figure 26: Location where NaviGATOR veered off the course and was stopped. 



9. CONCLUSION 
 
Overall the team was very pleased with the NaviGATOR system.  The base vehicle is very capable 
and has excellent mobility in very rough terrain.  The obstacle and terrain detection sensors and 
sensor integration approach worked very well as did the reactive planner module.  Overall, the 
control loop (from sensed objects to determination of vehicle actuation parameters) operated at a 
rate of over 20 Hz.  Also, a significant contribution of the effort was to show that JAUS could be 
used successfully in a situation such as this and that the standardized messaging system defined by 
JAUS could greatly simplify the overall integration effort. 
 
There are four key areas that are currently being pursued by the team.  The first two of these focus 
on resolving specific issues encountered while competing at the Grand Challenge event.  The other 
two are improvements that will make the NAVIGATOR system more resilient to such problems 
when they occur: 
 

1. Stability.  The stability of the controller can be improved simply by putting additional 
time into getting the control parameters properly tuned.  The goal is to achieve stable control 
at 25mph on pavement and 30mph on dirt in the near future. 
 
2. Position System.  We are currently improving the accuracy of the position system’s 
estimate of error so that when the output of the system is degraded it can inform the rest of 
the system appropriately.  A better version of the GPS switching code is being implemented 
that will allow the system to decide which GPS to use as the input to the NFM, the NavCom 
or the Garmin, based on which is better at the time.  At the same time, NavCom and Smiths 
Aerospace are working together to further improve the overall accuracy of the system. 
 
3. Dynamic BSS and PSS.  As discussed earlier, the reason the NAVIGATOR got stuck off 
the road in the race was due to a position error causing the Boundary Smart Sensor to shift 
the drivable corridor off the road.  To prevent this from happening in the future, the width of 
the corridor created by the BSS will be made a function of the position system root mean 
square error (RMS).  For example, if the position RMS is good then the BSS corridor in the 
grid will be correspondingly tight but when the position RMS degrades then the BSS will 
stroke a correspondingly wide corridor through its traversability grid.  In this way, the BSS 
will no longer eliminate the road as an option, thus allowing the sensors to find the road off 
to the side.  Similarly, the weight of the Path Smart Sensor (PSS) can be adjusted such that 
its recommended path is painted with tens when the position RMS is good, but only sevens 
or eights when the position RMS degrades, thus reducing its influence accordingly. 
 
4. Adaptive Planning Framework.  A more extensive implementation of the situation 
assessment specialists and high-level decision-making capabilities is currently underway.  
This will allow the NaviGATOR to do things like determine when it has become blocked 
and decide how to best fix the problem, such as backing up and re-planning.  Other 
examples include altering the aggressiveness of the plan (risk) based on mission parameters 
and altering the contribution of a given sensor based on the environmental situation. 

 



The first three items on this list are relatively short term and should be completed before this paper 
is published.  With a tuned controller, the position system upgraded, and the BSS and PSS 
dynamically adjusting to the position RMS, the NaviGATOR should be capable of completing the 
2005 DARPA course in under10 hours.  The maturation of the Adaptive Planning Framework will 
likely continue into the future for some time. 
 
In retrospect, the team would have benefited from more testing time in the California desert.  The 
issues associated with the positioning system and the high-speed control on pavement could have 
been resolved.  However, the project was very successful in that an entirely new vehicle system was 
designed, fabricated, and automated in a nine-month period, ready to compete in the 2005 DARPA 
Grand Challenge.  This was a monumental effort put on an aggressive time and resource schedule. 
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